CommonMark

John MacFarlane

20200 060 150

Contents:

010
1.1
1.2
1.3

020
2.1
2.2
23

030
3.1
3.2

040
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

050
5.1
5.2
53

060
6.1
6.2
6.3

goooooood

What is Markdown?
O0O000000O007 . . 0 e
0 O

gooo

gobooboooo
OODODO o e e e e e e e e e e e
UD00D000000000000 .0ttt e e e e e e

gooogooo

OOOD0 o e e e e e e e e e e e e e
ATX OODO o e e e e e e e e e e e s
Setext DO D . Lo o e e e e e e e e e e
OO0O000O0O0O0OO0O0O0OO v e s s s s e e e
I O
HTML blocks o o e e e e e e
Link reference definitions e
Paragraphs L e

Blank lines L e e e e

Container blocks
Block quotes e e e e e e
LIStItems e e e e e e e e e e e

LaStS . . e e e e e e e

Inlines
Backslash escapes e e e e e e e e e e
Entity and numeric character references Lo oo

Code spans e e e e e e e e e e e e e e

~N L W W

©

10
12

13
13
14

15
15
19
22
29
32
39
51
57
59

61
61
68
87

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

O70

7.1
7.2
7.3

Emphasis and strong emphasis o L 108
Links . . . o e e e e e e 126
Images o e e e e 142
AUtolinks . . . L. e e e e e e e e e 145
Raw HTML e e e e e e e e e 148
Hard line breaks o e e e e e e 152
Softlinebreaks L e e e e e e e e e e e e 154
Textual CONtent o o e e e e e e e e e e e e e e 154
Appendix: A parsing strategy 157
OVEIVIEW . . . v v i e 157
Phase 1: block structure e e e e e e e e e e e 158
Phase 2: inline structure L. e e e e e e e e e e e e 160

CommonMark

This is a translation of CommonMark Spec.

0000 : CommonMark Spec O O : John MacFarlane 0 00O O: 0290 0: '2019-04-06' 0000 O : 'CC-BY-SA
4.0 ...

https://spec.commonmark.org/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

010

Juoboogdug

1.1 What is Markdown?

Markdown OO0 OOD0OOOOO wsenet 0000 0000000000000 0O0O0OO0O0O0O0O0O0OOO0O0O0OO
000000000000 000dMarkdown O John Gruber 0 00 0O (Aaron Swartz D OO0 O 0000 O0O)02004
0000000 HTMLOODOODOOODOO (Markdown.pl)DOOODODOOODOOOOODOOD 100000
0000000000000 Markkdown OOOOOOOOOOOOOOOQOOOO0ODOOOOOOOOOOOOO
O Markdown OO O Q0000000000000 0OODOODOOD OD0DOO0OOOOODOOODOOOOMarkdown O
OCOOHTMLOOOODOOOOOOOOOOOO Redditd StackOverflowd GitHub OO OO OO OOOOoOoQO
Markdown OO0 000000000000 O0D0O0000OOMarkdownOO0 0000000000 OOOOO0OOODO
ddddooooooooooooooboboboobobooooo

Markdown 000000000000 O0O0OOOOOOODODOODOOOODOOOOOOOOCOOOOGGruber O
gbobooooooooog:

Markdown 00000000 COOOCCOODOOOOOOOOOO0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0OO
O0O0OMarkdown 000 0000000000000 OOODOOOOOOODOO0O0O000000O00O0O0O
0000000000 000000C000000D00C000000000000 O http://daringfireball.net/

projects/markdown/O]

0000 AsciibocOOD0OOODOOO MarkdownOOOOODOOOOOOOOOO0OOO0O0O0O0O0O0O0OO AsciiDoc
OO00O0C0O0OD0O0OD0OD0O0O0OO AsciiDocO0OOOO0OO:

1. List item one.

+

List item one continued with a second paragraph followed by an
Indented block.

$ 1s x.sh
$ mv x.sh ~/tmp

(ooooooo)

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://www.methods.co.nz/asciidoc/

CommonMark

(ooooooooon)

+

List item continued with a third paragraph.

2. List item two continued with an open block.
+

This paragraph is part of the preceding list item.

a. This list is nested and does not require explicit item
continuation.
+

This paragraph is part of the preceding list item.

b. List item b.

This paragraph belongs to item two of the outer list.

0000000000000 MarkdkownOOOQOQOOoOGOoOQOO:

1. List item one.

List item one continued with a second paragraph followed by an
Indented block.

$ 1s x.sh
$ mv x.sh ~/tmp

List item continued with a third paragraph.

2. List item two continued with an open block.

This paragraph is part of the preceding list item.

1. This list is nested and does not require explicit item continuation.

This paragraph is part of the preceding list item.

2. List item Db.

This paragraph belongs to item two of the outer list.

AsciiDoc 0 00 0000000000000 O0OODOOOOOOOOOOO0OOOOODOOOOOOODOO
Markdown 000 O00O000O00OCOOCODOOOOOO0OOCOOOOOOOOOOOCOOOOOOOO0O0O
ooobooooooooboooo

4 010000000000

CommonMark

1.2 00000000007

John Gruber 0 Markdown 000000000000 OCO0ODOCOO0ODOOOOOOOOOOODOOOODOOOD
gooo

l.00o0o0O000O000O0O0O0O0O0O0OOOOOOOOOOODOOOOOOOOO040000000000O
ooboooooobooooboooboooooooooobooooooooooooooo0oooooooon
04000000000000CO0000D0O0OCOO0O0OOMarkdown.pl000000O0000O0O
OO00000o0oo0O0dMarkdown 0000 0000000000000 O0O0OO0OOOOOOODOOOOO
OOO0ooOOOooOooooooo@Oo John Gruber OO ODO)

2. 0000000000000000DOO000O0O000D0O00O0ODO0O0DD0O0UDO00O0O0O0OOoOO
obobobooooooooboboboboobooobooooobobobobobobooooooDo
000000 (@UDO000O000O00O0000D000O0D0O00O000O0DO0ODO00O0OD)OJohn
Gruber O OO OODOODODOODODODODODOOOO)

3.000000000000000000O0O0000000Markdown.pl 000000 DOODOCOCOOOO
ooooo0o0ooOoO0oO0oDOoO00obOOoOoOobooOoOooooOooooOoooDo)

paragraph
code?

4. 0000000 <p>0000000000000C0O0D00O0OOCDOODOOOOOODOOOOOD
(loose)D 0D ODODODODOD (igh) 0000000000000 OOOOOOOOOOOOOODOOO

1. one

2. two
3. three

gobooooooooobooooooooo

1. one

- a

2. two

(O0:JohnGruber 0O OO OOOODOO ODOO)

S5.000000O0C0COOoOoOoOOoOO0OOOO0bOOO0OOO0OoOoOooOoooOooooooooooOoOoOoon

8. item 1
9. item 2
10. item 2a

12. DO0O0O0DO0OOOooOOO? 5

http://daringfireball.net/projects/markdown/syntax
http://article.gmane.org/gmane.text.markdown.general/1997
http://article.gmane.org/gmane.text.markdown.general/2146
http://article.gmane.org/gmane.text.markdown.general/2554

CommonMark

6.

7.

10.

11.

12.

13.

gogbooboboobooobbooboooboobooboobbooboobbooboobbooboon
gbobobooooooboobooboboboooooog

* Kk Kk ok *x

goboobooboobooooboboboboboooobobobobobobobobobooO
O000000o0D0000D00000000 Markdown D00 O0O0OO0OOOOOODOODOODOOO
Markdown.pl OO0 OOOOOOODOOOOOOOOOO)

fee
fie
- foe

- fum

oboooooobooooobooooooboboobOooOobOOoOoOboOobOOoOoOoOoOoOoOoOobOOoOobOOoOobOOoOooOO
oobooooooooobooooobooobobooon

[a backtick ()] (/url) and [another backtick ()] (/url).

goboobbooboobbooboobobooboobbooboobbooboobbooboon
gogoooood

*foo xbarx bazx

gogbooboboobooobbooboooboobooboobbooboobbooboobbooboon
gbobobooooooobooboboon

- “a long code span can contain a hyphen like this

- and it can screw things up’

0000000000000000000000000 (Markdown.pl OOO0O0ODOO0ODOOOOOOO
oooOoo0o0ooOoOoOoDpoOoOoboooobooooono)

- # Heading

oooooooooooboooboooooon

ggbooobooboobboobuoobbooobuoobbooboon

010000000000

CommonMark

> Blockquote [foo].
>

> [fool: /url

4. 00000000000 00DOO000DOOO00ODO0OU0bOOOoUOODOOOOD

[foo]: /urll
[fool: /url2

gboboooooboboboboooooboob0obooboo0ob0bOod Markdown.pl ODODOOOOOODO
U000 Markdown.pl OOOOOOOOOOOO0OO0OOOODOOOOCOOOODOOOOOOCOOOOODO
gboboooooon

0oooooooooooooooooooooo0oooooooooooooOooooooooooD (Vooo
GitHub wiki) 00000000 0000000000000O0O (8000 pandoc O docbook 0O OO OOO)
OOoOOoOoOO0O0O0O0000000o0ooooooooooooo0OMarkdownOOOOOOODOOODOOO
oooboOoooboooobo0ooooooooooooDooOoooDoog

1.3 00000000

OO0O00DoDO0o0d0dO0 Markkdown OO OO OO0ODOOOOOODOODOOOODOOOODODOOOOOD
Markdown 000 HTMLOOOODODOOOOOOOOOOODOODO0DO0O0O0O0O0OO0O0O0DO00O0O0O0OO0O
OO00D spec_test.py0000000000 MarkkdownOOOOOOOOOO0O0O00O000000O0O

python test/spec_tests.py —-spec spec.txt —--program PROGRAM

0000000000 Markdown OO OO OOO0O0O0OO0O00O0O000O000O0O0O0OHTMLOOOOOOOOO
oooooOoooO0oooooooooooOoooooHT™MLOOOO0O0O000O0C0O0000O0O000000AO0
ooooooOooooooooooooooooooooooooHTIMLOOOOOOOCOO

000000000 spec.txt 000 Markdown OO OO OO 0ODO0OODOOO0OOOOODODOOOODOODOODO
000000000000 00D0DO00D0Otools/makespec.py 0 spec.txt 0 HTMLO (DOOOODO
O0000)CommonMark OO0 OO ODOOO

ooooooooooobooobooooboooooon0 -000000

13. 00000000 7

020

HREENEN

21 0000

000 00010000000 CommonMark 000000000

ooooooopooooooooooooooooooo0oo @ooopoooooooboOoooooD)oOoo0
ooooooooooobodoobooooboooooooooooooobo0ooooooooooooOon

gooobobobobooobooboboooboobobbooboboU0obLDOoU Do jJooboboUooDbUooboD
gbobooooboobooboboboooooooboooboboboboooobooon

ooooooog (u+ooop) 0D0O0DOOODOOOOODO (u+o00D)OOO [DO]JOOODOOOOOOOOO
oo0oD ([oD)jobooo0o0oooO0oboo0ooboooooooag

0oJooooooo (u+oooA)ODO00NDODUODOOODOOODDOODOOODO (u+oooD)DODOOOOOOODO
gboboooooooogogon

OO00O00O0O0O0O0O0oo0OoOgo (u+o020)000000 (U+0009)DO0ODOOODOOOOOOOOO
oboobobooooooobouoboboboo

000000000 (U+0020)000 (U+0009)0000000 (U+0002)00000 (U+000B)0 00O D00
0 (U+000C)0 000000000 (U+000D)000000

oool1oooo00 (oooojooooooooo

0000000000 Unicode 00000000 2s 0000000000000 O00000 (U+0009000
0000000 (U+000D)0000D0D0D0 (U+000A)00000000 (U+000c)0 00000

0Jo0o0o0o00D 100000 [Do00oDooo0olooooooooog
ooooou+o020000000

ooooog[ooobo]joooooobooooboooo

CommonMark

ASCITO OGO O " #.8,% & ", G),*+,,,— .,/ (U+0021-2F), :, ;, <, =, >, ?, @ (U+003A-0040), [, \,
1, ", _, " (U+005B-0060), {, |, },or ~ (U+007B-007E) D O OO OO

OO0O00O[ASCIIOOOO]0000 Unicode 0O0ODOOOODO Pc,Pd,Pe,Pf,Pi,Po,orPs 0000000
gbobooooooogoog

22 00
000000 (0000000000000 00oo0oo0oo0oDo0o0oDoD0ooD0oUooOooDUooD 40
gbobooooboobooboboboooooooooo

000D00000D0o00o00ooo0ooO0 40000000000000000D000D0O0@UDODOOOOD
ooooOoOooooOoOoDpoOoooooobooon)

—foo—baz——bim

<pre><code>foo—baz——bim
</code></pre>

—foo—baz——bim

<pre><code>foo—baz——bim
</code></pre>

a—a
~rel”"bd"90—a

<pre><code>a—a
~rel”"bd”"90—a
</code></pre>

0000000000000 ooooo0oo00oo00o0ooo00oo004000000000000000
obobooooooogo

- foo

—bar

<p>foo</p>
<p>bar</p>
</1i>

10 020 0000

CommonMark

- foo

——bar

<p>foo</p>
<pre><code> bar
</code></pre>
</1li>

cboooboooooboobOoo>-00b0o000c00b0o0obO0obOOobOOoO00oboco0oOobOOobOOobObocOoobOOooDOOn
o0o00oooOOooO0ooOOooOOooOooDdoOUOoOUdOo0DOOooOOoOo>000000b00OOODOUoboUOboO 304do
coooooooooooOoOoOoOOOODODOO 1000000000000 OOOOOODOOOOOOOO0 foo
OooooooooedlldoonoOoOoOoOoOOOODODOOOOCOOOD2000000000000D0O0AO
ooooooooooobogo

>——foo

<blockquote>
<pre><code> foo
</code></pre>

</blockquote>

-——foo

<pre><code> foo
</code></pre>
</1i>

foo
—bar

<pre><code>foo
bar

</code></pre>

- foo
- bar

— — baz

(ooooooo)

22. 00 11

CommonMark

(0o00ooo0ooon)

foo

bar

baz</1li>

</1li>

</1li>

#—Foo

<hl>Foo</h1l>

*—pk—p Kk —

<hr />

23 0000000

OO0O0O00OO0O0000O0O0000000000 u+00000 REPLACEMENT CHARACTER (U+FFFD) 0O 00O

gooo

12

020 0000

13

0 30

Juoogugood

gobobooooooogoooboboboobooobooogoobooboboboboooooooDobDOobOooD
gogoodoboboobooboooobooboooboobooboboobbobLDbUoobboooDboobboOoo
goboboooooooboooobobobooooboobogooobobobUbobbooooooDobLOobOoD
gobooobboobooboboobooboooboobbooboobbooboobbooboon

3.1 0000

cooooooooooboooOooooOoOoOoboOoOobOOoOoOoOOoOoOoOoOOoO0ObOOObObOOOOoOoOoboOonoDn
goooooo 1oooooooopooOop20o0oogoooooooo

- “one

- two’

<1li> one</1li>
two </1li>

cooooo20000000D000000000D000OOOO0OOOODOOOOOOOOOOOOOOOOOOO
ooooooooooooooooooooobOOoO0oooooooooooOobOOooOOoOoOoooooooo20o
cooboooooboooboooooooooooOooboOoO0oooOoOooooOoo0O0obOOoOoOobOOoOooooOooOoon
ooboboooooboooooboooooooooooooboOooooOooooOobooOobboOoobooOoooooOooon
o020000000000000000

CommonMark

32 0000000000000000

gooooooobobobobbobobboboooooooooboboobobooooooobobobbobbobooooooon
goboooboooboboon

14 0300000000000

15

0 40

oot

OoOOO0 MarkdownOOOOODOOOOOOOOOOOOOOOOOOOOCOOOOOODOODODOO

41 0000

030000C0O0O0O0U0OOO0O0O0bO 30000 -,_DOoODOoO x0O0DODODOOODOOO (thematic break) 0 O O
goboobobooboobooobooboooboobobooboobo

* kK

<hr />
<hr />
<hr />

gooogo

+++

<p>+++</p>

<p>===</p>

oooooooood

* x

(ooooooo)

CommonMark

(0o00ooo0ooon)

<p>--—
* x

__</p>

jooooooooooooOoOOO0O0O0Ooo

<hr />
<hr />

<hr />

coobo40000000000000O

* Kk Kk

<pre><code>x*x*x*

</code></pre>

Foo

* K Kk

<p>Foo

*x %< /P>

jg00dooooopooooooodg

<hr />

ooooooboboocooboooooobooon

<hr />

* * * kkx ok k*x Kk k%

<hr />

(ooooooo)

16 040 0000000

CommonMark

(0o00ooo0ooon)

<hr />

ooboooooooooboocooooa

<p>_ _ _ _ a</p>
<p>a-————-— </p>
<p>--—a-—--</p>

b0 [bobojobobooboobooboobooboobobobooooLDobDobDobobobobooboo

<p>-</p>

ooooOoooooooboooboooo

- foo

* kK

- bar

foo</1li>

<hr />

bar</1li>

gobooobobooboobbooboon

Foo

* K Kk

bar

(ooooogoo)

41, 0O0OO 17

CommonMark

(0o00ooo0ooon)

<p>Foo</p>
<hr />

<p>bar</p>

OO000O0O0DOC0O00O00D0O0O0DDOO [setext0 00000000000 0OOCOODO[setextd 00100
gboboooobooboboboboboobodsetextDODOODOOOOOODOOODOODOODODOOOO

Foo

bar

<h2>Foo</h2>
<p>bar</p>

coooooooOoooobooooooOooOoOooOoboOoOoboOoOoOoOooOoOoOoooOoboOooonn

* Foo

* Bar

Foo</1li>

<hr />

Bar</1li>

gogbooobbooobuoobboobobooboobbooboobbuooboobbooo

- Foo

- kx *x %

Foo</1li>
<1li>

<hr />

</1li>

18 040 0000000

CommonMark

4.2 ATXO OO

ATXOOOO 1-6000000000000040000000000000000000000000000O
gobobooooooboobobooooboooobob#0b00bO0obOoboboobboobobobobooooD
goooooobOoOoOoOdOooOoO [boOoOoj0c0obDoU0OO0bDOoU0UDOU0bOOU0ODOO0OCOO0ODOUDOoObLOD
0[@oboooljoocooobobobooboobogboobobooooboooDobobooboobooDooDooDOoo
ooo30000booO0o0oobooO0ooboo0oOoOoooooOoooOoOO0obDOo00oDOoOooOOoOooooboOoOoD
oboboboooooooboobobobooooobooobDooD#0bDooboonDo

ocoooooooocoooo

foo

foo

##4+ foo
##4#4 foo
##4#4# foo
####4# foo

<hl>foo</hl>
<h2>foo</h2>
<h3>foo</h3>
<h4>foo</h4>
<h5>foo</h5>
<h6>foo</h6>

70000#000000000000O

####### foo

<p>###F#### foo</p>

Ooooooooooo#0000000O0O0O0CCOO0000O0O0O0DOO 100000000000O00O0O0O0AO0
Oo00000ooooooo0o00ooooooooo0000 ATXO0O0Ooooooooooooooooooo
ooooooooooobooooooobooooooogoo

#5 bolt
#hashtag

<p>#5 bolt</p>
<p>#hashtag</p>

oob0 #000b0o000boooooooooooooooog:

\## foo

(ooooooo)

4.2. ATXODO 19

http://www.aaronsw.com/2002/atx/atx.py

CommonMark

(0o00ooo0ooon)

<p>## foo</p>

coobooooooooboooobooOooooooon

foo xbar* \xbaz\=*

<hl>foo bar xbaz*</hl>

cooooo [oojobooboooooOoO0OO0OOOObObObbob

foo

<hl>foo</h1>

130000000000000000

foo
foo
foo

<h3>foo</h3>
<h2>foo</h2>
<hl>foo</hl>

400000COOCOOOCOOOOOOOOOOOOOoOoOoOooooo

foo

<pre><code># foo
</code></pre>

foo
bar

<p>foo
bar</p>

ooboooooooooog#x0oooo0o000000000

foo
#H#4 bar #H##

<h2>foo</h2>
<h3>bar</h3>

oooboo#0000000DOO000DO0O0n

20 040 0000000

CommonMark

foo ####HHH#H#HHHHHHFHERFHSHFHERFHASSSES
#H### foo #4#

<hl>foo</hl>
<h5>foo</h5>

cooboooooooobooobooOoooooooon

foo ##4#

<h3>foo</h3>

#0000 [ODO0]00000o0oooooo#000000000000000C0OOCOOOOOODOOODOODOOO

##+ foo ### b

<h3>foo ### b</h3>

gogbooboooobooboobbooobg

foo#

<hl>foo#</hl>

ooooooobooooboooooo#bO000b0O0O0O0OboOoooboboOoooboooon

foo \###
foo #\##
foo \#

<h3>foo ###</h3>
<h2>foo ###</h2>
<hl>foo #</hl>

ATXOOOOOOOOOOoOoooooooooOoOoooOoooooooooDooooOoATXOOOOOOOOoooo
oooooooo

* Kk Kk Kk

foo

* Kk Kk Kk

<hr />
<h2>foo</h2>
<hr />

4.2. ATXODO 21

CommonMark

Foo bar
baz
Bar foo

<p>Foo bar</p>
<hl>baz</hl>

<p>Bar foo</p>

ATXOOOOOOOOoOoOooooooooDoOoO

##
#
4 HHH

<h2></h2>
<hl></h1l>
<h3></h3>

4.3 Setext 0 0 O

setext 1000 10000 [00000]00000D0O0OO400000000000000000 100000
OO00DOCQOO0OD0O [setextDOOOO]O0D0O0OO0DOOOOO0ODODOOODDO setext0O0DOOOODOOOOODOD
0000000000000 0000000000000000[0D0000000ATXDODOoO]0[oooooon
jo[ooojooooo]joHEHT™MLOOOO]OOO0O0ODOOO0O0n

setext U000 0O0=0000000000~-00000000030000000000000O0O0O0DOODOO
OO00DOO0O0O0D0-01000000O[setextD 0000000000 DOOOODOOOODOOODOO

OO0DOO000 [setext0ODOOD 0000000000000 0O0DOODOOO0O=000000000000DO
O 10-0booooooobo0ooob 2000000000 oodooooo0ooOoooDoOUDooDoOoD
goboobbooboobooobooboboooboon

O00OsetextDODOODOOD0OOD0OOO0ODOODOD0OOO0OOO0OO0OOsetext0 000000000 DOODOODODO
gbobooodbDsetextOO0DOO0bOO0O0OO0O0oO0OoOO0OOO0ODOODODOO

ooooooooocoooo

Foo xbarx

<hl>Foo bar</hl>
<h2>Foo bar</h2>

22 040 0000000

CommonMark

goboobbooboobbooboon

<hl>Foo bar

baz</hl>

cooooooooooboooOooooOoOoOoboOoOobOOoOoOoOOoOoOoOoOOoO0ObOOObObOOOOoOoOoboOonoDn

oobob [bojoboboboooooog

<hl>Foo bar

baz</hl>

setext OO0 OO0OOO0OOCOCOO0OOOODOO

<h2>Foo</h2>
<hl>Foo</hl>

00000 30000000000000000D0000000DOO000O0oDOoOgg

<h2>Foo</h2>
<h2>Foo</h2>
<hl>Foo</hl>

400000COCODOOCOOOOOOOOOOOOOOOOO0OO0O0O0

4.3. SetextO OO

23

CommonMark

Foo

Foo

<pre><code>Foo

Foo
</code></pre>
<hr />

setext 100000 3000000000000000000000000000O00O00OAO

Foo

<h2>Foo</h2>

40000000000000000D000D0OO0O0ODODOOODOOO

Foo

<p>Foo
-———</p>

setext U0 O0O000OO0O0O0O0O0O0OOCOO0OOO0OOOO0OO0O0O

<p>Foo
= =</p>
<p>Foo</p>
<hr />

goboobooobobuooboobobooboobooo

<h2>Foo</h2>

24

040 0000000

CommonMark

goboobobooboobbooboooboon

<h2>Foo\</h2>

cobobOoO00obooOoooooOoO0oooO00oboOo0ooOoOOoO00oOboO00obOOo0o0obOOoDOboOn setextOOooono
oooooooo

<a title="a lot

of dashes"/>

<h2>'Foo</h2>

<p>'</p>

<h2><a title="a lot</h2>
<p>of dashess"/></p>

setext 100 0000000000O000O0O [OOOCO]000000000000

> Foo

<blockquote>
<p>Foo</p>
</blockquote>
<hr />

<blockquote>
<p>foo

bar

===</p>
</blockquote>

- Foo

(oooogoo)

4.3. SetextO OO 25

CommonMark

(0o00ooo0ooon)

Foo</1li>

<hr />

OO0setextOOOOOOOOOOO0OOOOOODOOOOOOOODOOOOOOOOOOOOOOOOO

Foo

Bar

<h2>Foo
Bar</h2>

oooo0od0bO0setextJO0O0OO0O0O00O00OO0O0O0OOO0O0OO

<hr />
<h2>Foo</h2>
<h2>Bar</h2>
<p>Baz</p>

OO0 setextDOOODOOOOOOOOOOO

<p>====</p>

setext 0O O0O0O0O00O0O0OO0OO0O0O0OCOO0OO0O0OCOO0OO0O0OO000OO0O0O0O000O0O0O0000
OO0 setextOOOODOOOO0OOOOODOOOOOOOOOOO

(ooooooo)

26 040 0000000

CommonMark

(0o00ooo0ooon)

foo</1li>

<hr />

foo

<pre><code>foo
</code></pre>
<hr />

<blockquote>
<p>foo</p>
</blockquote>
<hr />

ooooo> feoOOOOOODOOOOOOOOODOOOODOOODOOOODOOOO

<h2>> foo</h2>

O00000000:000 Markdown OO OO setext0 0000000000000 0000O00O0O0OO00OOO

ooooooooocoobooon

Foo

bar

baz

400000000000

1. 00 "Foo" OODOO "bar"O OO "baz"

2. 00 "Foobar'"OOOOOOOO "baz"

3. 00 "Foo bar --- baz"

4. 000 "Foobar"D OO "baz"

ooooo400000000000000000000 CommonMark 0O0O0O0O0O0OOOOOODOODOOO

0000ooO00ooo0d0oDoOoOoooOoUObD 1bggoboooo

4.3. SetextO OO

27

CommonMark

Foo

bar

baz

<p>Foo</p>
<h2>bar</h2>
<p>baz</p>

co20000000000000000C00CDOOODGOODODOO

Foo

bar

baz

<p>Foo
bar</p>
<hr />
<p>baz</p>

0000 [setextODODOOO]OD0000O00ODOODOODOODODOOOOO

Foo
bar

* Kk Kx

baz

<p>Foo
bar</p>
<hr />

<p>baz</p>

oco30000000000000000COODOOOOOOOOOOOOOO

Foo

<p>Foo
bar

baz</p>

28 040 0000000

CommonMark

44 0000O0ODOODOODOOO

goodoooooooodobo0oodoodoDOo0 1goo0 [DoocoooOooOg]ooogooooooo
0000000000000 0oo0DnooooDO0 400000000000000000000D0000O0OD0O
goooOooOodoboOo [bojobooobOdo0o4000b000O0DOO0ODOCOO0OODODOUOCODODOUODDOOD
oboboooo [ooobogoljooooboooa

cobOoobOob0obOoooOOoooOOoO0oOO0O0oO0oO0Oo0oOoOOoOobOOoObOOoO0OOOoO0ObOOObOOoOOOoOooOoOoOan
(0000000000000 oooooooooooon)

a simple
indented code block

<pre><code>a simple
indented code block
</code></pre>

ocoooooooooooooo (booojoobooOoOoOboOO0OO0OOOOOODOOODOOODOODOOOOO0

- foo

bar

<p>foo</p>
<p>bar</p>
</1li>

1. foo

- bar

<p>foo</p>

bar

</1li>

00000000000 Markdown OO O OO OOOOOO

<a/>

~hi*

(ooooooo)

44, D0O0ODOOOODOOOO 29

CommonMark

(0o00ooo0ooon)

— one

<pre><code><a/>

*hix

— one

</code></pre>

ocoooooooooo3ooooooooooo

chunkl

chunk?2

chunk3

<pre><code>chunkl

chunk?2

chunk3

</code></pre>

400000CCOOOOOOOOOOOOOOOOO0OOOO0OOOODOOOOOOOB0On

chunk1l

chunk?2

<pre><code>chunkl

chunk?2
</code></pre>

ocooooooooooooooooooooooOo@obooooOoOobOOobDOooOooooooooon)

Foo

bar

<p>Foo
bar</p>

30 040 0000000

CommonMark

00000ooO000oo00400000000000000D0DO00DOOO0O0ODODDODO0ODOOODOOOOOODn
gbobooooooboobobobooooog

foo

bar

<pre><code>foo
</code></pre>

<p>bar</p>

goboobboobooboooboobooobooboobbooboobboobo

Heading
foo

Heading

<hl>Heading</hl>
<pre><code>foo
</code></pre>
<h2>Heading</h2>
<pre><code>foo
</code></pre>
<hr />

oo0oo0ooo0o0ooo40000000000000000G0D0O

foo

bar

<pre><code> foo
bar

</code></pre>

goboobobobbooboobbooboobbooboobboooboon

foo

<pre><code>foo

</code></pre>

coooooooooobooobooOoooooooon

44, D0O0ODOOOODOOOO 31

CommonMark

foo

<pre><code>foo

</code></pre>

45 0000OO0O0OODOODOOO

oooooooo3goooooooooocooo ¢)ooooooo (woOooooooOooo@oooooo
oooooooooooooooooo)yooooooooooooo 3goooooogooooooooon
cooboooooooooon

gogoooboboobdoobooooboooogbhoob bbb boboboobboooDbooboOoo
gooooO00ooOoO0O0obDOoOoO0OooOoUOOoOooOUoOoOoOo]Oooo0obDOo00obDOo0UobOOoOoOOooLOoOoD
00@oo00o00oo0o0o0oDo0oo0oO00D0oDoU0o000o0Do0ooo0o0oOooooooooDoon
ooopoocoono)

The content of the code block consists of all subsequent lines, until a closing [code fence] of the same type as the code
block began with (backticks or tildes), and with at least as many backticks or tildes as the opening code fence. If the
leading code fence is indented N spaces, then up to N spaces of indentation are removed from each line of the content
(if present). (If a content line is not indented, it is preserved unchanged. If it is indented less than N spaces, all of the

indentation is removed.)

The closing code fence may be indented up to three spaces, and may be followed only by spaces, which are ignored.
If the end of the containing block (or document) is reached and no closing code fence has been found, the code block
contains all of the lines after the opening code fence until the end of the containing block (or document). (An alternative
spec would require backtracking in the event that a closing code fence is not found. But this makes parsing much less

efficient, and there seems to be no real down side to the behavior described here.)
0000000000000 0000000000D00o000o00ooooooDooOn

oooooOooooooooooooooooooooooooooo@moooo]oooooooobooooon
0000000000000 0D000D0O0code OO classOO0O0O00oooooooooooOoOooOnn
oooD [0DboO00ojooooooobooooooo

goboobbooboobbooboo

<pre><code><
>
</code></pre>

32 040 0000000

CommonMark

goboobod

<pre><code><
&qgt;

</code></pre>

cooboocoobooooooocooon

foo

<p><code>foo</code></p>

gogbooobobooobooboobbooboobboobuoobboooboon

aaa

<pre><code>aaa

</code></pre>

<pre><code>aaa

</code></pre>

oobooOooooOoocoOoboOoobOoOoOoOoOooOoOoOOoOoOoOOoOoOoDbOoOOobOoOoOon

aaa

<pre><code>aaa

(ooooooo)

45. J0OO00DO0OOOOOOOO 33

CommonMark

(0o00ooo0ooon)

</code></pre>

aaa

<pre><code>aaa

</code></pre>

ooooooooooooooooooobooOoOoooOoOoooooooOooOo(@OoOboOoOoOoOoo ooboooo]o

OO [OoOoOojoooooooooon)

<pre><code></code></pre>

aaa
<pre><code>

aaa

</code></pre>

> aaa

bbb

<blockquote>
<pre><code>aaa
</code></pre>
</blockquote>
<p>bbb</p>

gogbooboooobooboobboobg

(ooooooo)

34

040 0000000

CommonMark

(0o00ooo0ooon)

<pre><code>

</code></pre>

cooboocoobooooooocooon

<pre><code></code></pre>

obooooobdobobooooobooooooooobobooobooo0oooooobobOobooooooon

ooo

aaa

aaa

<pre><code>aaa
aaa
</code></pre>

aaa
aaa

aaa

<pre><code>aaa
aaa

aaa
</code></pre>

aaa
aaa

aaa

<pre><code>aaa
aaa
aaa

</code></pre>

45. J0OO00DO0OOOOOOOO

35

CommonMark

400000000000D0OOC00O0DO0O0DOO00O0ODOOO0ODODODO0ODOOOOOOOg

aaa

<pre><code>" "

aaa

</code></pre>

Closing fences may be indented by 0-3 spaces, and their indentation need not match that of the opening fence:

aaa

<pre><code>aaa

</code></pre>

aaa

<pre><code>aaa

</code></pre>

This is not a closing fence, because it is indented 4 spaces:

aaa

<pre><code>aaa

</code></pre>

Code fences (opening and closing) cannot contain internal spaces:

aaa

<p><code> </code>

aaa</p>

(ooooooo)

36 040 0000000

CommonMark

(0o00ooo0ooon)

</code></pre>

Fenced code blocks can interrupt paragraphs, and can be followed directly by paragraphs, without a blank line between:

foo

bar

baz

<p>foo</p>
<pre><code>bar

</code></pre>
<p>baz</p>

Other blocks can also occur before and after fenced code blocks without an intervening blank line:

baz

<h2>foo</h2>
<pre><code>bar
</code></pre>
<hl>baz</hl>

An [info string] can be provided after the opening code fence. Although this spec doesn't mandate any particular
treatment of the info string, the first word is typically used to specify the language of the code block. In HTML output,
the language is normally indicated by adding a class to the code element consisting of 1anguage- followed by the

language name.

" ruby
def foo (x)
return 3

end

<pre><code class="language-ruby">def foo (x)

return 3

(ooooooo)

45. J0OO00DO0OOOOOOOO 37

CommonMark

(0o00ooo0ooon)

end

</code></pre>

~ ruby startline=3 $%Q@#S$
def foo(x)
return 3

end

<pre><code class="language-ruby">def foo (x)
return 3
end

</code></pre>

<pre><code class="language—;"></code></pre>

[Info strings] for backtick code blocks cannot contain backticks:

aa

foo

<p><code>aa</code>

foo</p>

[Info strings] for tilde code blocks can contain backticks and tildes:

am~ @a " e

foo

<pre><code class="language—aa">foo

</code></pre>

Closing code fences cannot have [info strings]:

aaa

<pre><code>'"" aaa

</code></pre>

38

040 0000000

CommonMark

4.6 HTML blocks

An HTML block is a group of lines that is treated as raw HTML (and will not be escaped in HTML output).

There are seven kinds of [HTML block], which can be defined by their start and end conditions. The block begins with
a line that meets a start condition (after up to three spaces optional indentation). It ends with the first subsequent line
that meets a matching end condition, or the last line of the document, or the last line of the container block containing
the current HTML block, if no line is encountered that meets the [end condition]. If the first line meets both the [start

condition] and the [end condition], the block will contain just that line.

1. Start condition: line begins with the string <script, <pre, or <style
(case-insensitive), followed by whitespace, the string >, or the end of the line.
End condition: line contains an end tag </script>, </pre>, or </style> (case-insensitive; it

need not match the start tag).

2. Start condition: line begins with the string <l——

End condition: line contains the string ——>.

3. Start condition: line begins with the string <?.

End condition: line contains the string ?>.

4. Start condition: line begins with the string <! followed by an wuppercase ASCII Iletter.

End condition: line contains the character >.

5. Start condition: line begins with the string <! [CDATA].

End condition: line contains the string]] >.

6. Start condition: line begins the string < or </ followed by one of the strings (case-insensitive)
address, article, aside, base, basefont, blockquote, body, caption, center, col,
colgroup, dd, details, dialog, dir, div, dl, dt, fieldset, figcaption, figure,
footer, form, frame, frameset, hl, h2, h3, h4, h5, h6, head, header, hr, html,
iframe, legend, 1i, 1ink, main, menu, menuitem, nav, noframes, ol, optgroup, option,
p, param, section, source, summary, table, tbody, td, tfoot, th, thead, title,
tr, track, ul, followed by [whitespace], the end of the line, the string >, or the string />
End condition: line is followed by a [blank line] line is followed by a [blank line].

7. Start condition: line begins with a complete [open tag] (with any [tag name] other than script,
style, or pre) or a complete [closing tag], followed only by [whitespace] or the end of the line.

End condition: line is followed by a [blank line].

HTML blocks continue until they are closed by their appropriate [end condition], or the last line of the document or
other container block. This means any HTML within an HTML block that might otherwise be recognised as a start

condition will be ignored by the parser and passed through as-is, without changing the parser's state.

For instance, <pre> within a HTML block started by <table> will not affect the parser state; as the HTML block

4.6. HTML blocks 39

CommonMark

was started in by start condition 6, it will end at any blank line. This can be surprising:

<table><tr><td>
<pre>

*xHellox*x*,

world.
</pre>
</td></tr></table>

<table><tr><td>
<pre>

xHellox,
<p>world.
</pre></p>
</td></tr></table>

In this case, the HTML block is terminated by the newline — the x*Hello«« text remains verbatim — and regular

parsing resumes, with a paragraph, emphasised wor 1d and inline and block HTML following.

All types of [HTML blocks] except type 7 may interrupt a paragraph. Blocks of type 7 may not interrupt a paragraph.
(This restriction is intended to prevent unwanted interpretation of long tags inside a wrapped paragraph as starting
HTML blocks.)

Some simple examples follow. Here are some basic HTML blocks of type 6:

<table>
<tr>
<td>

</td>
</tr>
</table>

okay.

<table>
<tr>
<td>

</td>
</tr>
</table>
<p>okay.</p>

<div>
+hellox

<foo><a>

(ooooooo)

40 040 0000000

CommonMark

(0o00ooo0ooon)

<div>
*hellox
<foo><a>

A block can also start with a closing tag:

</div>

*foox

</div>

x*foox

Here we have two HTML blocks with a Markdown paragraph between them:

<DIV CLASS="foo">
*Markdownx

</DIV>

;DIV CLASS="foo">

<p>Markdown</p>
</DIV>

The tag on the first line can be partial, as long as it is split where there would be whitespace:

<div id="foo"
class="bar">

</div>

<div id="foo"
class="bar">

</div>

<div id="foo" class="bar
baz">

</div>

<div id="foo" class="bar
baz">

</div>

An open tag need not be closed:

4.6. HTML blocks 41

CommonMark

<div>

*foox
barx
<div>

xfoox*
<p>bar</p>

A partial tag need not even be completed (garbage in, garbage out):

<div id="foo"

*hix

<div id="foo"

*xhix

<div class

foo

<div class

foo

The initial tag doesn't even need to be a valid tag, as long as it starts like one:

<div *???-&&&—<-—-—

*foox

<div *??2?2-&&&—<———

*foox

In type 6 blocks, the initial tag need not be on a line by itself:

<div>xfoox*x</div>

<div>xfoo*</div>

<table><tr><td>
foo
</td></tr></table>

<table><tr><td>
foo
</td></tr></table>

Everything until the next blank line or end of document gets included in the HTML block. So, in the following example,
what looks like a Markdown code block is actually part of the HTML block, which continues until a blank line or the

42 040 0000000

CommonMark

end of the document is reached:

<div></div>
c
int x = 33;

<div></div>
c
int x = 33;

To start an [HTML block] with a tag that is not in the list of block-level tags in (6), you must put the tag by itself on

the first line (and it must be complete):

barx

barx

In type 7 blocks, the [tag name] can be anything:

<Warning>
barx

</Warning>

<Warning>
*barx

</Warning>

<i class="foo">
barx

</i>

<i class="foo">
*barx
</i>

</ins>

barx

</ins>

barx

These rules are designed to allow us to work with tags that can function as either block-level or inline-level tags. The

4.6. HTML blocks 43

CommonMark

 tag is a nice example. We can surround content with <de 1> tags in three different ways. In this case, we get

araw HTML block, because the <de 1> tag is on a line by itself:

*foox

*foox

In this case, we get a raw HTML block that just includes the tag (because it ends with the following blank

line). So the contents get interpreted as CommonMark:

*foox

<p>foo</p>

Finally, in this case, the <de 1> tags are interpreted as [raw HTML] inside the CommonMark paragraph. (Because the
tag is not on a line by itself, we get inline HTML rather than an [HTML block].)

*foox

<p>foo</p>

HTML tags designed to contain literal content (script, style, pre), comments, processing instructions, and
declarations are treated somewhat differently. Instead of ending at the first blank line, these blocks end at the first line

containing a corresponding end tag. As a result, these blocks can contain blank lines:

A pre tag (type 1):

<pre language="haskell"><code>

import Text.HTML.TagSoup

main :: IO ()
main = print $ parseTags tags
</code></pre>

okay

<pre language="haskell"><code>

import Text.HTML.TagSoup

(oooogoo)

44 040 0000000

CommonMark

(0o00ooo0ooon)

main :: IO ()
main = print $ parseTags tags
</code></pre>

<p>okay</p>

A script tag (type 1):

<script type="text/javascript">

// JavaScript example

document .getElementById ("demo") .innerHTML = "Hello JavaScript!";
</script>

okay

<script type="text/javascript">

// JavaScript example

document .getElementById ("demo") .innerHTML = "Hello JavaScript!";
</script>
<p>okay</p>

A style tag (type 1):

<style
type="text/css">
hl {color:red;}

p {color:bluej;}
</style>
okay

<style
type="text/css">
hl {color:red;}

p {color:blue;}
</style>
<p>okay</p>

If there is no matching end tag, the block will end at the end of the document (or the enclosing [block quote][block

quotes] or [list item][list items]):

<style
type="text/css">

foo

(ooooooo)

4.6. HTML blocks 45

CommonMark

(0o00ooo0ooon)

<style
type="text/css">

foo

> <div>

> foo

bar

<blockquote>
<div>

foo
</blockquote>
<p>bar</p>

- <div>

- foo

<1li>

<div>

</1li>
foo</1li>

The end tag can occur on the same line as the start tag:

<style>p{color:red; }</style>

*foox

<style>p{color:red; }</style>
<p>foo</p>

<!-— foo —-->xbarx
bazx
<!-— foo —-—->xbarx

<p>baz</p>

Note that anything on the last line after the end tag will be included in the [HTML block]:

<script>
foo

</script>1. xbarx

(ooooooo)

46 040 0000000

CommonMark

(0o00ooo0ooon)

<script>
foo

</script>1. xbar=

A comment (type 2):

<!-- Foo

bar
baz -—>

okay
<!-- Foo
bar

baz --—>

<p>okay</p>

A processing instruction (type 3):

<?php
echo '>"';

7>

okay
<?php
echo '>"';

?>

<p>okay</p>

A declaration (type 4):

<!DOCTYPE html>

<!DOCTYPE html>

CDATA (type 5):

<! [CDATA[
function matchwo (a, b)

{

(oooogoo)

4.6. HTML blocks

47

CommonMark

(0o00ooo0ooon)

if (a < b && a < 0) then {

return 1;
} else {
return 0;

}
11>
okay

<! [CDATA[
function matchwo (a, b)

{
if (a < b && a < 0) then {

return 1;

} else {

return 0;

}
11>
<p>okay</p>

The opening tag can be indented 1-3 spaces, but not 4:

<!-— foo ——>
<!-- foo -->
<!-— foo -—>

<pre><code><!-- foo -->
</code></pre>

<div>

<div>

<div>

<pre><code><divé>

</code></pre>

An HTML block of types 1--6 can interrupt a paragraph, and need not be preceded by a blank line.

Foo
<div>

(ooooooo)

48 040 0000000

CommonMark

(0o00ooo0ooon)

bar

</div>

<p>Foo</p>
<div>
bar

</div>

However, a following blank line is needed, except at the end of a document, and except for blocks of types 1--5,
[above][HTML block]:

<div>
bar
</div>

xfoox

<div>
bar
</div>

*foox

HTML blocks of type 7 cannot interrupt a paragraph:

Foo

baz

<p>Foo

baz</p>

This rule differs from John Gruber's original Markdown syntax specification, which says:

The only restrictions are that block-level HTML elements —e.g. <div>, <table>, <pre>, <p>, etc. —
must be separated from surrounding content by blank lines, and the start and end tags of the block should not

be indented with tabs or spaces.
In some ways Gruber's rule is more restrictive than the one given here:
e It requires that an HTML block be preceded by a blank line.
* It does not allow the start tag to be indented.
* It requires a matching end tag, which it also does not allow to be indented.
Most Markdown implementations (including some of Gruber's own) do not respect all of these restrictions.

There is one respect, however, in which Gruber's rule is more liberal than the one given here, since it allows blank lines

4.6. HTML blocks 49

CommonMark

to occur inside an HTML block. There are two reasons for disallowing them here. First, it removes the need to parse
balanced tags, which is expensive and can require backtracking from the end of the document if no matching end tag is
found. Second, it provides a very simple and flexible way of including Markdown content inside HTML tags: simply

separate the Markdown from the HTML using blank lines:

Compare:

<div>
*Emphasizedx text.
</div>
<div>

<p>Emphasized text.</p>
</div>

<div>
*Emphasizedx text.
</div>

<div>
+*Emphasizedx text.

</div>

Some Markdown implementations have adopted a convention of interpreting content inside tags as text if the open tag
has the attribute markdown=1. The rule given above seems a simpler and more elegant way of achieving the same

expressive power, which is also much simpler to parse.

The main potential drawback is that one can no longer paste HTML blocks into Markdown documents with 100%
reliability. However, in most cases this will work fine, because the blank lines in HTML are usually followed by
HTML block tags. For example:

<table>
<tr>
<td>

Hi
</td>
</tr>

</table>

<table>

<tr>

(ooooooo)

50 040 0000000

CommonMark

(0o00ooo0ooon)

<td>

Hi

</td>
</tr>
</table>

There are problems, however, if the inner tags are indented and separated by spaces, as then they will be interpreted as

an indented code block:

<table>
<tr>

<td>
Hi
</td>

</tr>
</table>

<table>
<tr>
<pre><code><td>
Hi
&1t; /tdsagt;
</code></pre>
</tr>
</table>

Fortunately, blank lines are usually not necessary and can be deleted. The exception is inside <pre> tags, but as

described [above][HTML blocks], raw HTML blocks starting with <pre> can contain blank lines.

4.7 Link reference definitions

A link reference definition consists of a [link label], indented up to three spaces, followed by a colon (:), optional
[whitespace] (including up to one [line ending]), a [link destination], optional [whitespace] (including up to one [line
ending]), and an optional [link title], which if it is present must be separated from the [link destination] by [whitespace].

No further [non-whitespace characters] may occur on the line.

A [link reference definition] does not correspond to a structural element of a document. Instead, it defines a label which
can be used in [reference links] and reference-style [images] elsewhere in the document. [Link reference definitions]

can come either before or after the links that use them.

4.7. Link reference definitions 51

CommonMark

[foo]: /url "title"

[foo]

<p>foo</p>

[foo]:
/url
'the title'’

[foo]

<p>foo</p>

[Fooxbar\]]:my_(url) 'title (with parens)'

[Fooxbar\]]

<p>Fooxbar]</p>

[Foo bar]:
<my url>
'title'!

[Foo bar]

<p>Foo bar</p>

The title may extend over multiple lines:

[foo]: /url '
title
linel

line2

v

[foo]

<p><a href="/url" title="
title
linel
line2

">foo</p>

However, it may not contain a [blank line]:

52 040 0000000

CommonMark

[fool: /url 'title

with blank line'

[foo]

;p>[foo]: /url 'title</p>

<p>with blank line'</p>
<p>[foo]</p>

The title may be omitted:

[foo]:
/url

[foo]

<p>foo</p>

The link destination may not be omitted:

[foo]:
[foo]

<p>[foo] :</p>
<p>[foo]</p>

However, an empty link destination may be specified using angle brackets:

[foo]l: <>

[foo]

<p>foo</p>

The title must be separated from the link destination by whitespace:

[foo]: <bar> (baz)

[foo]

<p>[foo]: <bar>(baz)</p>
<p>[fool</p>

Both title and destination can contain backslash escapes and literal backslashes:

4.7. Link reference definitions

53

CommonMark

[foo]: /url\bar\xbaz "foo\"bar\baz"
[foo]

<p>foo</p>

A link can come before its corresponding definition:

[foo]

[foo]l: url

<p>foo</p>

If there are several matching definitions, the first one takes precedence:

[foo]

[foo]l: first

[foo]: second

<p>foo</p>

As noted in the section on [Links], matching of labels is case-insensitive (see [matches]).

[FOO]: /url

[Foo]

<p>Foo</p>

[ATQ]: /pou
[ay ®]

<p>ay w</p>

Here is a link reference definition with no corresponding link. It contributes nothing to the document.

[foo]: /url

Here is another one:

foo

(ooooooo)

54 040 0000000

CommonMark

(0o00ooo0ooon)

1: /url

bar

<p>bar</p>

This is not a link reference definition, because there are [non-whitespace characters] after the title:

[foo]: /url "title" ok

<p>[foo]: /url "title" ok</p>

This is a link reference definition, but it has no title:

[foo]: /url
"title" ok

<p>"title" ok</p>

This is not a link reference definition, because it is indented four spaces:

[foo]l: /url "title"
[foo]
<pre><code>[foo]: /url "title"

</code></pre>

<p>[fool</p>

This is not a link reference definition, because it occurs inside a code block:

[foo]: /url

[foo]

<pre><code>[foo]: /url
</code></pre>
<p>[fool</p>

A [link reference definition] cannot interrupt a paragraph.

Foo
[bar]: /baz

[bar]

(ooooogoo)

4.7. Link reference definitions

55

CommonMark

(0o00ooo0ooon)

<p>Foo
[bar]: /baz</p>
<p>[bar]</p>

However, it can directly follow other block elements, such as headings and thematic breaks, and it need not be followed

by a blank line.

[Foo]
[fool: /url

> bar

<hl>Foo</hl>
<blockquote>

<p>bar</p>

</blockquote>

<hl>bar</hl>

<p>foo</p>

[fool: /url

[foo]

<p>===

foo</p>

Several [link reference definitions] can occur one after another, without intervening blank lines.

[foo]: /foo-url "foo"
[bar]: /bar-url
"bar"

[baz]: /baz-url

[foo],
[bar],
[baz]

<p>foo,
bar,

baz</p>

56 040 0000000

CommonMark

[Link reference definitions] can occur inside block containers, like lists and block quotations. They affect the entire

document, not just the container in which they are defined:

[foo]
> [fool: /url
<p>foo</p>

<blockquote>
</blockquote>

Whether something is a [link reference definition] is independent of whether the link reference it defines is used in the

document. Thus, for example, the following document contains just a link reference definition, and no visible content:

[foo]l: /url

4.8 Paragraphs

A sequence of non-blank lines that cannot be interpreted as other kinds of blocks forms a paragraph. The contents of
the paragraph are the result of parsing the paragraph's raw content as inlines. The paragraph's raw content is formed

by concatenating the lines and removing initial and final [whitespace].

A simple example with two paragraphs:

aaa

bbb

<p>aaa</p>
<p>bbb</p>

Paragraphs can contain multiple lines, but no blank lines:

aaa
bbb

ccc
ddd

<p>aaa
bbb</p>
<p>ccc
ddd</p>

Multiple blank lines between paragraph have no effect:

4.8. Paragraphs 57

CommonMark

aaa

bbb

<p>aaa</p>
<p>bbb</p>

Leading spaces are skipped:

aaa
bbb

<p>aaa
bbb</p>

Lines after the first may be indented any amount, since indented code blocks cannot interrupt paragraphs.

aaa
bbb
ccc

<p>aaa
bbb

cce</p>

However, the first line may be indented at most three spaces, or an indented code block will be triggered:

aaa
bbb

<p>aaa
bbb</p>

aaa
bbb

<pre><code>aaa
</code></pre>
<p>bbb</p>

Final spaces are stripped before inline parsing, so a paragraph that ends with two or more spaces will not end with a
[hard line break]:

aaa
bbb

(ooooooo)

58 040 0000000

CommonMark

(0o00ooo0ooon)

<p>aaa

bbb</p>

4.9 Blank lines

[Blank lines] between block-level elements are ignored, except for the role they play in determining whether a [list] is

[tight] or [loose].

Blank lines at the beginning and end of the document are also ignored.

aaa

aaa

<p>aaa</p>
<hl>aaa</hl>

4.9. Blank lines 59

61

050

Container blocks

A container block is a block that has other blocks as its contents. There are two basic kinds of container blocks: [block

quotes] and [list items]. [Lists] are meta-containers for [list items].
We define the syntax for container blocks recursively. The general form of the definition is:

If X is a sequence of blocks, then the result of transforming X in such-and-such a way is a container of type Y

with these blocks as its content.

So, we explain what counts as a block quote or list item by explaining how these can be generated from their contents.
This should suffice to define the syntax, although it does not give a recipe for parsing these constructions. (A recipe is

provided below in the section entitled A parsing strategy.)

5.1 Block quotes

A block quote marker consists of 0-3 spaces of initial indent, plus (a) the character > together with a following space,
or (b) a single character > not followed by a space.

The following rules define [block quotes]:

1. Basic case. If a string of lines Ls constitute a sequence of blocks Bs, then the result of prepending a [block

quote marker] to the beginning of each line in Ls is a block quote containing Bs.

2. Laziness. If a string of lines Ls constitute a block quote with contents Bs, then the result of deleting the initial
[block quote marker] from one or more lines in which the next [non-whitespace character] after the [block quote
marker] is [paragraph continuation text] is a block quote with Bs as its content. Paragraph continuation text is

text that will be parsed as part of the content of a paragraph, but does not occur at the beginning of the paragraph.

3. Consecutiveness. A document cannot contain two [block quotes] in a row unless there is a [blank line] between

them.

Nothing else counts as a block quote.

CommonMark

Here is a simple example:

> # Foo
> bar

> baz

<blockquote>
<hl>Foo</hl>
<p>bar
baz</p>
</blockquote>

The spaces after the > characters can be omitted:

># Foo
>bar

> baz

<blockquote>
<hl>Foo</hl>
<p>bar
baz</p>
</blockquote>

The > characters can be indented 1-3 spaces:

> # Foo
> bar

> baz

<blockquote>
<hl>Foo</hl>
<p>bar
baz</p>
</blockquote>

Four spaces gives us a code block:

> # Foo
> bar

> baz

<pre><code>> # Foo
> bar

> baz
</code></pre>

The Laziness clause allows us to omit the > before [paragraph continuation text]:

62 O 50 Container blocks

CommonMark

> # Foo
> bar

baz

<blockquote>
<hl>Foo</hl>
<p>bar
baz</p>
</blockquote>

A block quote can contain some lazy and some non-lazy continuation lines:

> bar
baz

> foo

<blockquote>
<p>bar

baz

foo</p>
</blockquote>

Laziness only applies to lines that would have been continuations of paragraphs had they been prepended with [block

quote markers]. For example, the > cannot be omitted in the second line of

> foo

> ———

without changing the meaning:

> foo

<blockquote>
<p>foo</p>
</blockquote>
<hr />

Similarly, if we omit the > in the second line of

> - foo

> - bar

then the block quote ends after the first line:

> - foo

- bar

(ooooooo)

5.1. Block quotes

63

CommonMark

(0o00ooo0ooon)

<blockquote>

foo</1li>

</blockquote>

bar

For the same reason, we can't omit the > in front of subsequent lines of an indented or fenced code block:

> foo

bar

<blockquote>
<pre><code>foo
</code></pre>
</blockquote>
<pre><code>bar

</code></pre>

foo

<blockquote>
<pre><code></code></pre>
</blockquote>

<p>foo</p>

<pre><code></code></pre>

Note that in the following case, we have a [lazy continuation line]:

> foo

- bar

<blockquote>
<p>foo

- bar</p>
</blockquote>

To see why, note that in

> foo

> - bar

64 O 50 Container blocks

CommonMark

the — bar is indented too far to start a list, and can't be an indented code block because indented code blocks cannot

interrupt paragraphs, so it is [paragraph continuation text].

A block quote can be empty:

<blockquote>
</blockquote>

<blockquote>
</blockquote>

A block quote can have initial or final blank lines:

> foo

<blockquote>
<p>foo</p>
</blockquote>

A blank line always separates block quotes:

> foo

> bar

<blockquote>
<p>foo</p>
</blockquote>
<blockquote>
<p>bar</p>
</blockquote>

(Most current Markdown implementations, including John Gruber's original Markdown . pl, will parse this example
as a single block quote with two paragraphs. But it seems better to allow the author to decide whether two block quotes

or one are wanted.)

Consecutiveness means that if we put these block quotes together, we get a single block quote:

5.1. Block quotes 65

CommonMark

> foo

> bar

<blockquote>
<p>foo
bar</p>
</blockquote>

To get a block quote with two paragraphs, use:

> foo
>

> bar

<blockquote>
<p>foo</p>
<p>bar</p>
</blockquote>

Block quotes can interrupt paragraphs:

foo

> bar

<p>foo</p>
<blockquote>
<p>bar</p>
</blockquote>

In general, blank lines are not needed before or after block quotes:

> aaa

* kK

> bbb

<blockquote>
<p>aaa</p>
</blockquote>
<hr />
<blockquote>
<p>bbb</p>
</blockquote>

However, because of laziness, a blank line is needed between a block quote and a following paragraph:

> bar

baz

(oooogoo)

66 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

<blockquote>
<p>bar
baz</p>
</blockquote>

> bar

baz

<blockquote>
<p>bar</p>
</blockquote>
<p>baz</p>

> bar
>

baz

<blockquote>
<p>bar</p>
</blockquote>
<p>baz</p>

It is a consequence of the Laziness rule that any number of initial >s may be omitted on a continuation line of a nested

block quote:

> > > foo

bar

<blockquote>
<blockquote>
<blockquote>
<p>foo
bar</p>
</blockquote>
</blockquote>
</blockquote>

>>> foo
> bar

>>baz

<blockquote>
<blockquote>
<blockquote>

(ooooooo)

5.1. Block quotes

67

CommonMark

(0o00ooo0ooon)

<p>foo

bar

baz</p>
</blockquote>
</blockquote>
</blockquote>

When including an indented code block in a block quote, remember that the [block quote marker] includes both the >

and a following space. So five spaces are needed after the >:

> code

> not code

<blockquote>
<pre><code>code
</code></pre>
</blockquote>
<blockquote>
<p>not code</p>
</blockquote>

5.2 List items

A list marker is a [bullet list marker] or an [ordered list marker].
A bullet list marker is a —, +, or * character.

An ordered list marker is a sequence of 1--9 arabic digits (0—9), followed by either a . character or a) character. (The

reason for the length limit is that with 10 digits we start seeing integer overflows in some browsers.)
The following rules define [list items]:

1. Basic case. If a sequence of lines Ls constitute a sequence of blocks Bs starting with a [non-whitespace charac-
ter], and M is a list marker of width W followed by 1 ALd’ N aL’d’ 4 spaces, then the result of prepending M and
the following spaces to the first line of Ls, and indenting subsequent lines of Ls by W + N spaces, is a list item
with Bs as its contents. The type of the list item (bullet or ordered) is determined by the type of its list marker.

If the list item is ordered, then it is also assigned a start number, based on the ordered list marker.
Exceptions:

1. When the first list item in a [list] interrupts a paragraph---that is, when it starts on a line that would otherwise
count as [paragraph continuation text]---then (a) the lines Ls must not begin with a blank line, and (b) if the

list item is ordered, the start number must be 1.

68 O 50 Container blocks

CommonMark

2. If any line is a [thematic break][thematic breaks] then that line is not a list item.

For example, let Ls be the lines

A paragraph
with two lines.

indented code

> A block quote.

<p>A paragraph

with two lines.</p>
<pre><code>indented code
</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

And let M be the marker 1., and N = 2. Then rule #1 says that the following is an ordered list item with start number

1, and the same contents as Ls:

1. A paragraph

with two lines.

indented code

> A block quote.

<1li>

<p>A paragraph

with two lines.</p>
<pre><code>indented code
</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

</1li>

The most important thing to notice is that the position of the text after the list marker determines how much indentation
is needed in subsequent blocks in the list item. If the list marker takes up two spaces, and there are three spaces between
the list marker and the next [non-whitespace character], then blocks must be indented five spaces in order to fall under

the list item.

Here are some examples showing how far content must be indented to be put under the list item:

5.2. List items 69

CommonMark

— one

two

one</1i>

<p>two</p>

— one

two

<1li>
<p>one</p>
<p>two</p>
</1li>

- one

two

one</1i>

<pre><code> two
</code></pre>

- one

two

<p>one</p>
<p>two</p>
</1li>

It is tempting to think of this in terms of columns: the continuation blocks must be indented at least to the column
of the first [non-whitespace character] after the list marker. However, that is not quite right. The spaces after the list
marker determine how much relative indentation is needed. Which column this indentation reaches will depend on

how the list item is embedded in other constructions, as shown by this example:

70 O 50 Container blocks

CommonMark

> > 1. one
>>

>> two

<blockquote>
<blockquote>

<1li>
<p>one</p>
<p>two</p>
</1li>

</blockquote>
</blockquote>

Here two occurs in the same column as the list marker 1 ., but is actually contained in the list item, because there is

sufficient indentation after the last containing blockquote marker.

The converse is also possible. In the following example, the word two occurs far to the right of the initial text of the
list item, one, but it is not considered part of the list item, because it is not indented far enough past the blockquote

marker:

>>— one
>>

> > two

<blockquote>
<blockquote>

one</1i>

<p>two</p>
</blockquote>
</blockquote>

Note that at least one space is needed between the list marker and any following content, so these are not list items:

—one

2.two

<p>-one</p>
<p>2.two</p>

A list item may contain blocks that are separated by more than one blank line.

5.2. List items n

CommonMark

- foo

bar

<p>foo</p>
<p>bar</p>
</1li>

A list item may contain any kind of block:

1. foo

bar

baz

> bam

<p>foo</p>
<pre><code>bar
</code></pre>
<p>baz</p>
<blockquote>
<p>bam</p>
</blockquote>
</1li>

A list item that contains an indented code block will preserve empty lines within the code block verbatim.

- Foo

bar

baz

<1li>
<p>Foo</p>

oooooooo)

72 0O 50 Container blocks

CommonMark

(0o00ooo0ooon)

<pre><code>bar

baz
</code></pre>
</1li>

Note that ordered list start numbers must be nine digits or less:

123456789. ok

<ol start="123456789">
ok</1i>

1234567890. not ok

<p>1234567890. not ok</p>

A start number may begin with Os:

0. ok

<ol start="0">
ok</1li>

003. ok

<ol start="3">
ok</1li>

A start number may not be negative:

-1. not ok

<p>-1. not ok</p>

2. Item starting with indented code. If a sequence of lines Ls constitute a sequence of blocks Bs starting with

an indented code block, and M is a list marker of width W followed by one space, then the result of prepending

M and the following space to the first line of Ls, and indenting subsequent lines of Ls by W + I spaces, is a list

item with Bs as its contents. If a line is empty, then it need not be indented. The type of the list item (bullet or

ordered) is determined by the type of its list marker. If the list item is ordered, then it is also assigned a start

5.2. Listitems

73

CommonMark

number, based on the ordered list marker.

An indented code block will have to be indented four spaces beyond the edge of the region where text will be included

in the list item. In the following case that is 6 spaces:

- foo

bar

<p>foo</p>
<pre><code>bar
</code></pre>
</1i>

And in this case it is 11 spaces:

10. foo

bar

<ol start="10">

<p>foo</p>
<pre><code>bar
</code></pre>
</1li>

If the first block in the list item is an indented code block, then by rule #2, the contents must be indented one space

after the list marker:

indented code

paragraph

more code

<pre><code>indented code
</code></pre>
<p>paragraph</p>
<pre><code>more code

</code></pre>

1. indented code

(ooooooo)

74 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

paragraph

more code

<pre><code>indented code
</code></pre>
<p>paragraph</p>
<pre><code>more code
</code></pre>

</1li>

Note that an additional space indent is interpreted as space inside the code block:

1. indented code

paragraph

more code

<pre><code> indented code
</code></pre>
<p>paragraph</p>
<pre><code>more code
</code></pre>

</1li>

Note that rules #1 and #2 only apply to two cases: (a) cases in which the lines to be included in a list item begin with a
[non-whitespace character], and (b) cases in which they begin with an indented code block. In a case like the following,
where the first block begins with a three-space indent, the rules do not allow us to form a list item by indenting the

whole thing and prepending a list marker:

foo

bar

<p>foo</p>
<p>bar</p>

- foo

(ooooooo)

5.2. List items 75

CommonMark

(0o00ooo0ooon)

bar

foo</1li>

<p>bar</p>

This is not a significant restriction, because when a block begins with 1-3 spaces indent, the indentation can always be

removed without a change in interpretation, allowing rule #1 to be applied. So, in the above case:

- foo

bar

<p>foo</p>
<p>bar</p>
</1li>

3. Item starting with a blank line. If a sequence of lines Ls starting with a single [blank line] constitute a
(possibly empty) sequence of blocks Bs, not separated from each other by more than one blank line, and M is a
list marker of width W, then the result of prepending M to the first line of Ls, and indenting subsequent lines of
Ls by W + I spaces, is a list item with Bs as its contents. If a line is empty, then it need not be indented. The
type of the list item (bullet or ordered) is determined by the type of its list marker. If the list item is ordered,

then it is also assigned a start number, based on the ordered list marker.

Here are some list items that start with a blank line but are not empty:

foo

bar

baz

foo</1li>

<pre><code>bar
</code></pre>
</1li>

<1li>

(ooooooo)

76 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

<pre><code>baz
</code></pre>
</1li>

When the list item starts with a blank line, the number of spaces following the list marker doesn't change the required

indentation:

foo

foo</1li>

A list item can begin with at most one blank line. In the following example, foo is not part of the list item:

foo

</1i>

<p>foo</p>

Here is an empty bullet list item:

- foo

- bar

foo</1li>
</1i>
bar

It does not matter whether there are spaces following the [list marker]:

- foo

- bar

foo</1li>

@oogogoggogm

5.2. List items 77

CommonMark

(0o00ooo0ooon)

</1i>
bar</1li>

Here is an empty ordered list item:

foo

3. bar

foo</1li>
</1i>
bar

A list may start or end with an empty list item:

</1i>

However, an empty list item cannot interrupt a paragraph:

foo

*

foo

<p>foo
*</p>

<p>foo
1.</p>

4. Indentation. If a sequence of lines Ls constitutes a list item according to rule #1, #2, or #3, then the result

of indenting each line of Ls by 1-3 spaces (the same for each line) also constitutes a list item with the same

contents and attributes. If a line is empty, then it need not be indented.

Indented one space:

1. A paragraph

with two lines.

(ooooooo)

78

O 50 Container blocks

CommonMark

(0o00ooo0ooon)

indented code

> A block quote.

<p>A paragraph

with two lines.</p>
<pre><code>indented code
</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

</1li>

Indented two spaces:

1. A paragraph

with two lines.

indented code

> A block quote.

<p>A paragraph

with two lines.</p>
<pre><code>indented code
</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

</1li>

Indented three spaces:

1. A paragraph
with two lines.

indented code

> A block quote.

(ooooooo)

5.2. Listitems

79

CommonMark

(0o00ooo0ooon)

<p>A paragraph

with two lines.</p>
<pre><code>indented code
</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

</1li>

Four spaces indent gives a code block:

1. A paragraph

with two lines.

indented code

> A block quote.

<pre><code>1l. A paragraph

with two lines.

indented code

> A block quote.
</code></pre>

5. Laziness. If a string of lines Ls constitute a list item with contents Bs, then the result of deleting some or all
of the indentation from one or more lines in which the next [non-whitespace character] after the indentation is
[paragraph continuation text] is a list item with the same contents and attributes. The unindented lines are called

lazy continuation lines.

Here is an example with [lazy continuation lines]:

1. A paragraph

with two lines.

indented code

> A block quote.

<p>A paragraph

with two lines.</p>

<pre><code>indented code

(ooooooo)

80 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

</code></pre>
<blockquote>

<p>A block quote.</p>
</blockquote>

</1li>

Indentation can be partially deleted:

1. A paragraph

with two lines.

A paragraph

with two lines.

These examples show how laziness can work in nested structures:

> 1. > Blockquote

continued here.

<blockquote>

<1li>

<blockquote>
<p>Blockquote
continued here.</p>
</blockquote>

</1li>

</blockquote>

> 1. > Blockquote

> continued here.

<blockquote>

<blockquote>
<p>Blockquote
continued here.</p>
</blockquote>

</1li>

</blockgquote>

5.2. Listitems

81

CommonMark

6. That's all. Nothing that is not counted as a list item by rules #1--5 counts as a /ist item.

The rules for sublists follow from the general rules [above][List items]. A sublist must be indented the same number

of spaces a paragraph would need to be in order to be included in the list item.

So, in this case we need two spaces indent:

- foo
- bar
- baz

- boo

foo

bar

baz

boo</1li>

</1i>

</1li>

</1li>

One is not enough:

- foo
- bar
- baz

- boo

foo</1li>
bar
baz
boo</1i>

Here we need four, because the list marker is wider:

10) foo

- bar

<ol start="10">

(oooogoo)

82 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

foo

bar</1li>

</1li>

Three is not enough:

10) foo
- bar

<ol start="10">
foo</1i>

bar</1i>

A list may be the first block in a list item:

- - foo

<1li>

foo</1li>

</1li>

1. - 2. foo

<ol start="2">
foo</1li>

</1li>

</1li>

A list item can contain a heading:

5.2. Listitems

83

CommonMark

- # Foo
- Bar

baz

<hl>Foo</hl>
</1li>

<h2>Bar</h2>
baz</1li>

5.2.1 Motivation

John Gruber's Markdown spec says the following about list items:

1. "List markers typically start at the left margin, but may be indented by up to three spaces. List markers must be

followed by one or more spaces or a tab."

2. "To make lists look nice, you can wrap items with hanging indents.... But if you don't want to, you don't have

"

to.

3. "List items may consist of multiple paragraphs. Each subsequent paragraph in a list item must be indented by

either 4 spaces or one tab."

4. "It looks nice if you indent every line of the subsequent paragraphs, but here again, Markdown will allow you

to be lazy."
5. "To put a blockquote within a list item, the blockquote's > delimiters need to be indented."
6. "To put a code block within a list item, the code block needs to be indented twice — 8§ spaces or two tabs."

These rules specify that a paragraph under a list item must be indented four spaces (presumably, from the left margin,
rather than the start of the list marker, but this is not said), and that code under a list item must be indented eight
spaces instead of the usual four. They also say that a block quote must be indented, but not by how much; however,
the example given has four spaces indentation. Although nothing is said about other kinds of block-level content, it
is certainly reasonable to infer that all block elements under a list item, including other lists, must be indented four

spaces. This principle has been called the four-space rule.

The four-space rule is clear and principled, and if the reference implementation Markdown.pl had followed it, it
probably would have become the standard. However, Markdown.pl allowed paragraphs and sublists to start with
only two spaces indentation, at least on the outer level. Worse, its behavior was inconsistent: a sublist of an outer-level

list needed two spaces indentation, but a sublist of this sublist needed three spaces. It is not surprising, then, that

84 O 50 Container blocks

CommonMark

different implementations of Markdown have developed very different rules for determining what comes under a list
item. (Pandoc and python-Markdown, for example, stuck with Gruber's syntax description and the four-space rule,

while discount, redcarpet, marked, PHP Markdown, and others followed Markdown . pl's behavior more closely.)

Unfortunately, given the divergences between implementations, there is no way to give a spec for list items that will be
guaranteed not to break any existing documents. However, the spec given here should correctly handle lists formatted
with either the four-space rule or the more forgiving Markdown . p1 behavior, provided they are laid out in a way that

is natural for a human to read.

The strategy here is to let the width and indentation of the list marker determine the indentation necessary for blocks
to fall under the list item, rather than having a fixed and arbitrary number. The writer can think of the body of the list
item as a unit which gets indented to the right enough to fit the list marker (and any indentation on the list marker).

(The laziness rule, #5, then allows continuation lines to be unindented if needed.)

This rule is superior, we claim, to any rule requiring a fixed level of indentation from the margin. The four-space rule

is clear but unnatural. It is quite unintuitive that

- foo

bar

- baz

should be parsed as two lists with an intervening paragraph,

foo</1i>

<p>bar</p>

baz</1i>

as the four-space rule demands, rather than a single list,

<1li>
<p>foo</p>
<p>bar</p>

baz</1li>

</1i>

The choice of four spaces is arbitrary. It can be learned, but it is not likely to be guessed, and it trips up beginners

regularly.

5.2. List items 85

CommonMark

Would it help to adopt a two-space rule? The problem is that such a rule, together with the rule allowing 1--3 spaces
indentation of the initial list marker, allows text that is indented less than the original list marker to be included in the

list item. For example, Markdown.pl parses

— Oone

two

as a single list item, with two a continuation paragraph:

<p>one</p>
<p>two</p>
</1li>

and similarly

> — Oone

two

as

<blockquote>

<1li>
<p>one</p>
<p>two</p>
</1li>

</blockquote>

This is extremely unintuitive.

Rather than requiring a fixed indent from the margin, we could require a fixed indent (say, two spaces, or even one
space) from the list marker (which may itself be indented). This proposal would remove the last anomaly discussed.
Unlike the spec presented above, it would count the following as a list item with a subparagraph, even though the

paragraph bar is not indented as far as the first paragraph foo:

10. foo

bar

Arguably this text does read like a list item with bar as a subparagraph, which may count in favor of the proposal.

However, on this proposal indented code would have to be indented six spaces after the list marker. And this would

86 O 50 Container blocks

CommonMark

break a lot of existing Markdown, which has the pattern:

1. foo

indented code

where the code is indented eight spaces. The spec above, by contrast, will parse this text as expected, since the code

block's indentation is measured from the beginning of foo.

The one case that needs special treatment is a list item that starts with indented code. How much indentation is required
in that case, since we don't have a "first paragraph" to measure from? Rule #2 simply stipulates that in such cases, we
require one space indentation from the list marker (and then the normal four spaces for the indented code). This will
match the four-space rule in cases where the list marker plus its initial indentation takes four spaces (a common case),

but diverge in other cases.

5.3 Lists

A list is a sequence of one or more list items [of the same type]. The list items may be separated by any number of

blank lines.

Two list items are of the same type if they begin with a [list marker] of the same type. Two list markers are of the same
type if (a) they are bullet list markers using the same character (-, +, or) or (b) they are ordered list numbers with

the same delimiter (either . or)).

A list is an ordered list if its constituent list items begin with [ordered list markers], and a bullet list if its constituent

list items begin with [bullet list markers].

The start number of an [ordered list] is determined by the list number of its initial list item. The numbers of subsequent

list items are disregarded.

A list is loose if any of its constituent list items are separated by blank lines, or if any of its constituent list items
directly contain two block-level elements with a blank line between them. Otherwise a list is tight. (The difference in

HTML output is that paragraphs in a loose list are wrapped in <p> tags, while paragraphs in a tight list are not.)

Changing the bullet or ordered list delimiter starts a new list:

- foo
- bar
+ baz

foo</1li>
bar</1li>

(ooooooo)

5.3. Lists 87

CommonMark

(0o00ooo0ooon)

baz</1li>

foo
2. bar
3) baz

foo</1li>
bar</1li>

<ol start="3">
baz</1li>

In CommonMark, a list can interrupt a paragraph. That is, no blank line is needed to separate a paragraph from a

following list:

Foo
- bar

- baz

<p>Foo</p>

bar
baz</1li>

Markdown.pl does not allow this, through fear of triggering a list via a numeral in a hard-wrapped line:

The number of windows in my house is
14. The number of doors is 6.

Oddly, though, Markdown . pl does allow a blockquote to interrupt a paragraph, even though the same considerations

might apply.

In CommonMark, we do allow lists to interrupt paragraphs, for two reasons. First, it is natural and not uncommon for

people to start lists without blank lines:

I need to buy
- new shoes
- a coat

- a plane ticket

Second, we are attracted to a

88

O 50 Container blocks

CommonMark

principle of uniformity: if a chunk of text has a certain meaning, it will continue to have the same meaning

when put into a container block (such as a list item or blockquote).

(Indeed, the spec for [list items] and [block quotes] presupposes this principle.) This principle implies that if

* I need to buy
- new shoes
- a coat

- a plane ticket

is a list item containing a paragraph followed by a nested sublist, as all Markdown implementations agree it is (though

the paragraph may be rendered without <p> tags, since the list is "tight"), then

I need to buy
- new shoes
- a coat

- a plane ticket

by itself should be a paragraph followed by a nested sublist.

Since it is well established Markdown practice to allow lists to interrupt paragraphs inside list items, the [principle of
uniformity] requires us to allow this outside list items as well. (reStructuredText takes a different approach, requiring

blank lines before lists even inside other list items.)

In order to solve of unwanted lists in paragraphs with hard-wrapped numerals, we allow only lists starting with 1 to

interrupt paragraphs. Thus,

The number of windows in my house is

14. The number of doors is 6.

<p>The number of windows in my house is

14. The number of doors is 6.</p>

We may still get an unintended result in cases like

The number of windows in my house is

1. The number of doors is 6.

<p>The number of windows in my house is</p>

<1i>The number of doors is 6.</1li>

but this rule should prevent most spurious list captures.

There can be any number of blank lines between items:

5.3. Lists 89

http://docutils.sourceforge.net/rst.html

CommonMark

- foo

- bar

- baz

<p>foo</p>
</1li>

<p>bar</p>
</1li>

<p>baz</p>
</1li>

- foo
- bar

- baz

bim

foo

bar

<1li>
<p>baz</p>
<p>bim</p>
</1li>

</1li>

</1li>

To separate consecutive lists of the same type, or to separate a list from an indented code block that would otherwise

be parsed as a subparagraph of the final list item, you can insert a blank HTML comment:

- foo

- bar

(oooogoo)

90 O 50 Container blocks

CommonMark

(0o00ooo0ooon)

<l—= —=>

- baz

- bim

foo</1i>
bar

<l—= ——>

baz</1li>
bim</1i>

- foo

notcode

- foo

<lee ——>

code

<p>foo</p>
<p>notcode</p>
</1li>

<p>foo</p>
</1li>

<l—= ——>
<pre><code>code
</code></pre>

List items need not be indented to the same level. The following list items will be treated as items at the same list level,

since none is indented enough to belong to the previous list item:

(ooooooo)

5.3. Lists

91

CommonMark

(0o00ooo0ooon)

»a</1li>
b</1i>
c</1i>
d</1li>
e</1li>
f</1li>
g

<p>a</p>
</1li>

<p>b</p>
</1li>

<p>c</p>
</1i>

Note, however, that list items may not be indented more than three spaces. Here — e is treated as a paragraph contin-

uation line, because it is indented more than three spaces:

»a</1li>
b</1li>
c</1li>
d

- e

92 O 50 Container blocks

CommonMark

And here, 3. c is treated as in indented code block, because it is indented four spaces and preceded by a blank line.

<p>a</p>

</1li>

<p>b</p>

</1li>

<pre><code>3. c
</code></pre>

This is a loose list, because there is a blank line between two of the list items:

<1li>
<p>a</p>
</1li>

<p>b</p>
</1li>

<p>c</p>
</1li>

So is this, with a empty second item:

<p>a</p>

(ooooooo)

5.3. Lists 93

CommonMark

(0o00ooo0ooon)

</1li>
</1li>

<p>c</p>
</1li>

These are loose lists, even though there is no space between the items, because one of the items directly contains two

block-level elements with a blank line between them:

<p>a</p>
</1li>

<p>b</p>
<p>c</p>
</1li>

<p>d</p>
</1li>

[ref]: /url
- d

<p>a</p>
</1i>
<1li>
<p>b</p>
</1li>
<1li>
<p>d</p>
</1li>

94

O 50 Container blocks

CommonMark

This is a tight list, because the blank lines are in a code block:

»a</1li>

<pre><code>b

</code></pre>
</1li>
c</1i>

This is a tight list, because the blank line is between two paragraphs of a sublist. So the sublist is loose while the outer

list is tight:

a

<1li>
<p>b</p>
<p>c</p>
</1li>

</1li>
d</1li>

This is a tight list, because the blank line is inside the block quote:

Q VvV VvV o

@oogooggom

5.3. Lists 95

CommonMark

(0o00ooo0ooon)

a
<blockquote>
<p>b</p>
</blockquote>
</1li>
c</1li>

This list is tight, because the consecutive block elements are not separated by blank lines:

a
<blockquote>
<p>b</p>
</blockquote>
<pre><code>c
</code></pre>
</1li>
d</1i>

A single-paragraph list is tight:

a</1li>

a

b</1i>

</1li>

(ooooooo)

96

O 50 Container blocks

CommonMark

(0o00ooo0ooon)

This list is loose, because of the blank line between the two block elements in the list item

foo

bar

<pre><code>foo
</code></pre>
<p>bar</p>
</1li>

Here the outer list is loose, the inner list tight:

* foo

* bar

baz

<1li>
<p>foo</p>

bar</1li>

<p>baz</p>
</1li>

<p>a</p>

(ooooooo)

5.3. Lists 97

CommonMark

(0o00ooo0ooon)

b</1li>
c</1li>

</1li>

<p>d</p>

e</1li>
f</1li>

</1li>

98 O 50 Container blocks

99

060

Inlines

Inlines are parsed sequentially from the beginning of the character stream to the end (left to right, in left-to-right

languages). Thus, for example, in

“hi“lo®

<p><code>hi</code>lo" </p>

hi is parsed as code, leaving the backtick at the end as a literal backtick.

6.1 Backslash escapes

Any ASCII punctuation character may be backslash-escaped:

NINTAENSASN&N TN (V) Ve NN, N =N /N s\ <N=A>A2A RN NN TN NN N~

<p>lsaquot; #$%samp; ' () *+,—./:;&1lt;=8gt; 2Q[\]"_" {|}~</p>

Backslashes before other characters are treated as literal backslashes:

\—=\A\a\ \3\@ \""c2”"ab

<p>\—=\A\a\ \3\@ \""c2""ab</p>

Escaped characters are treated as regular characters and do not have their usual Markdown meanings:

\+not emphasizedx
\
 not a tag
\[not a link] (/foo0)
\"'not code"

1\. not a list

* not a list

(ooooooo)

CommonMark

(0o00ooo0ooon)

\# not a heading
\[foo]: /url "not a reference"

\ö not a character entity

<p>*not emphasizedx*

 not a tag

[not a link] (/foo)

‘not code’

1. not a list

* not a list

not a heading

[foo]l: /url "not a reference"

&ouml; not a character entity</p>

If a backslash is itself escaped, the following character is not:

\\xemphasisx*

<p>\emphasis</p>

A backslash at the end of the line is a [hard line break]:

foo\
bar

<p>foo

bar</p>

Backslash escapes do not work in code blocks, code spans, autolinks, or raw HTML.:

VAN

<p><code>\ [\ </code></p>

ANAY

<pre><code>\[\]

</code></pre>

<pre><code>\[\]

</code></pre>

100 O 6 0 Inlines

CommonMark

<http://example.com?find=\>

<p>http://example.com?find=*x</p>

But they work in all other contexts, including URLs and link titles, link references, and [info strings] in [fenced code
blocks]:

[foo] (/bar\x "ti\xtle")

<p>foo</p>

[foo]

[foo]l: /bar\x "ti\xtle"

<p>foo</p>

foo\+bar

foo

<pre><code class="language-footbar">foo
</code></pre>

6.2 Entity and numeric character references
Valid HTML entity references and numeric character references can be used in place of the corresponding Unicode
character, with the following exceptions:

 Entity and character references are not recognized in code blocks and code spans.

 Entity and character references cannot stand in place of special characters that define structural elements in
CommonMark. For example, although * can be used in place of a literal % character, * cannot

replace x in emphasis delimiters, bullet list markers, or thematic breaks.

Conforming CommonMark parsers need not store information about whether a particular character was represented in

the source using a Unicode character or an entity reference.

Entity references consist of & + any of the valid HTMLS entity names + ; . The document https://html.spec.whatwg.

org/multipage/entities.json is used as an authoritative source for the valid entity references and their corresponding

6.2. Entity and numeric character references 101

https://html.spec.whatwg.org/multipage/entities.json
https://html.spec.whatwg.org/multipage/entities.json

CommonMark

code points.

 & © Æ Ď
¾ ℋ ⅆ

∲ ≧̸

<p>""c2””al & "~"c2""a9 *""c3""86 ""cd4""8e
~c2”"be "N"e2”"847"8b ""e2”"857"86
~re2”"887"b2 O "cc”"b8</p>

Decimal numeric character references consist of & # + a string of 1--7 arabic digits + ; . A numeric character reference is
parsed as the corresponding Unicode character. Invalid Unicode code points will be replaced by the REPLACEMENT
CHARACTER (U+FFFD). For security reasons, the code point U+0000 will also be replaced by U+FFFD.

Ӓ Ϡ �

<p># ~*d37"92 ~"cfrral Mref M bfNbd</p>

Hexadecimal numeric character references consist of &# + either X or x + a string of 1-6 hexadecimal digits + ;.
They too are parsed as the corresponding Unicode character (this time specified with a hexadecimal numeral instead

of decimal).

" ആ ಫ

<p>" ""e0""b4""86 "~"e0”""b2""ab</p>

Here are some nonentities:

 &x; &#; &#x;
�

&#abcdef0;
&ThisIsNotDefined; &hi?;

<p>& nbsp &x; &#; & #x;
& #87654321;
& #abcdef0;
samp; ThisIsNotDefined; &hi?;</p>

Although HTMLS5 does accept some entity references without a trailing semicolon (such as ©), these are not

recognized here, because it makes the grammar too ambiguous:

©

<p>& copy</p>

Strings that are not on the list of HTMLS5 named entities are not recognized as entity references either:

102 O 6 0 Inlines

CommonMark

&MadeUpEntity;

<p>& MadeUpEntity; </p>

Entity and numeric character references are recognized in any context besides code spans or code blocks, including

URLs, [link titles], and [fenced code block][] [info strings]:

[foo] (/fö ö "fö ö ")

<p>foo</p>

[foo]
[foo]: /fö ö "fö ö"

<p>foo</p>

fö ö

foo

<pre><code class="language-f*""c3""b6""c3""b6">fo0
</code></pre>

Entity and numeric character references are treated as literal text in code spans and code blocks:

T fö ö "

<p><code>fgamp; ouml; & ouml; </code></p>

fö fö

<pre><code>f& ouml; f& ouml;

</code></pre>

Entity and numeric character references cannot be used in place of symbols indicating structure in CommonMark

documents.

* foos#42;

foox

(ooooooo)

6.2. Entity and numeric character references 103

CommonMark

(0o00ooo0ooon)

<p>*foo*

foo</p>

* foo

* foo

<p>* foo</p>

foo</1li>

foo

 bar

<p>foo

bar</p>

	 foo

<p>—foo</p>

[a] (url "tit")

<p>[a] (url "tit")</p>

6.3 Code spans

A backtick string is a string of one or more backtick characters (") that is neither preceded nor followed by a backtick.

A code span begins with a backtick string and ends with a backtick string of equal length. The contents of the code

span are the characters between the two backtick strings, normalized in the following ways:
* First, [line endings] are converted to [spaces].

* If the resulting string both begins and ends with a [space] character, but does not consist entirely of [space]
characters, a single [space] character is removed from the front and back. This allows you to include code that
begins or ends with backtick characters, which must be separated by whitespace from the opening or closing

backtick strings.

This is a simple code span:

104 0 60 Inlines

CommonMark

“foo®

<p><code>foo</code></p>

Here two backticks are used, because the code contains a backtick. This example also illustrates stripping of a single

leading and trailing space:

foo ° bar

<p><code>foo ' bar</code></p>

This example shows the motivation for stripping leading and trailing spaces:

<p><code>" " </code></p>

Note that only one space is stripped:

<p><code> ' </code></p>

The stripping only happens if the space is on both sides of the string:

<p><code> a</code></p>

Only [spaces], and not [unicode whitespace] in general, are stripped in this way:

Tare2r”albrre27nals”

<p><code>""c2”"alb”*"c2""al</code></p>

No stripping occurs if the code span contains only spaces:

SANEDAN0Y

<p><code>""c2”"al0</code>

<code> </code></p>

[Line endings] are treated like spaces:

6.3. Code spans

105

CommonMark

foo
bar

baz

<p><code>foo bar baz</code></p>

foo

<p><code>foo </code></p>

Interior spaces are not collapsed:

" foo bar

baz"

<p><code>foo bar Dbaz</code></p>

Note that browsers will typically collapse consecutive spaces when rendering <code> elements, so it is recommended
that the following CSS be used:

code{white-space: pre-wrap;}

Note that backslash escapes do not work in code spans. All backslashes are treated literally:

*foo\ bar’

<p><code>foo\</code>bar” </p>

Backslash escapes are never needed, because one can always choose a string of n backtick characters as delimiters,

where the code does not contain any strings of exactly n backtick characters.

" foo bar’

<p><code>foo bar</code></p>

foo ' bar °

<p><code>foo ' bar</code></p>

Code span backticks have higher precedence than any other inline constructs except HTML tags and autolinks. Thus,

for example, this is not parsed as emphasized text, since the second * is part of a code span:

106 O 6 0 Inlines

CommonMark

«*foo™ x°

<p>*xfoo<code>x</code></p>

And this is not parsed as a link:

[not a “1link] (/foo)

<p>[not a <code>link] (/foo</code>)</p>

Code spans, HTML tags, and autolinks have the same precedence. Thus, this is code:

“"

<p><code><a href="</code>" > </p>

But this is an HTML tag:
"
<p>'</p>

And this is code:

‘<http://foo.bar. baz>"

<p><code><http://foo.bar.</code>bazé> </p>

But this is an autolink:

<http://foo.bar. baz>"

<p>http://foo.bar. baz </p>

When a backtick string is not closed by a matching backtick string, we just have literal backticks:

“foo

<p>""foo' “</p>

" foo

<p>" foo</p>

The following case also illustrates the need for opening and closing backtick strings to be equal in length:

6.3. Code spans

107

CommonMark

“foo “bar™’

<p>" foo<code>bar</code></p>

6.4 Emphasis and strong emphasis

John Gruber's original Markdown syntax description says:

Markdown treats asterisks (x) and underscores (_) as indicators of emphasis. Text wrapped with one or _ will

be wrapped with an HTML tag; double *'s or _'s will be wrapped with an HTML tag.

This is enough for most users, but these rules leave much undecided, especially when it comes to nested emphasis. The
original Markdown . pl test suite makes it clear that triple = x and delimiters can be used for strong emphasis,

and most implementations have also allowed the following patterns:

**xstrong emphxxx*

xxstrongx in emphx
xxemph in strongxx
*xin strong xemphx*x*x

*in emph **strongx*x*

The following patterns are less widely supported, but the intent is clear and they are useful (especially in contexts like

bibliography entries):

semph *with emphx in itx

**xstrong **with strongxx in it#*x

Many implementations have also restricted intraword emphasis to the » forms, to avoid unwanted emphasis in words

containing internal underscores. (It is best practice to put these in code spans, but users often do not.)

internal emphasis: fooxbarxbaz

no emphasis: foo_bar_baz

The rules given below capture all of these patterns, while allowing for efficient parsing strategies that do not backtrack.

First, some definitions. A delimiter run is either a sequence of one or more * characters that is not preceded or followed
by a non-backslash-escaped * character, or a sequence of one or more __ characters that is not preceded or followed by

a non-backslash-escaped _ character.

A left-flanking delimiter run is a [delimiter run] that is (1) not followed by [Unicode whitespace], and either (2a)
not followed by a [punctuation character], or (2b) followed by a [punctuation character] and preceded by [Unicode
whitespace] or a [punctuation character]. For purposes of this definition, the beginning and the end of the line count as

Unicode whitespace.

108 O 6 0 Inlines

http://daringfireball.net/projects/markdown/syntax#em

CommonMark

A right-flanking delimiter run is a [delimiter run] that is (1) not preceded by [Unicode whitespace], and either (2a)
not preceded by a [punctuation character], or (2b) preceded by a [punctuation character] and followed by [Unicode
whitespace] or a [punctuation character]. For purposes of this definition, the beginning and the end of the line count as

Unicode whitespace.
Here are some examples of delimiter runs.

¢ left-flanking but not right-flanking:

**+xabc
_abc

*x"abc"

abc

* right-flanking but not left-flanking:

abcxx*
abc_

"abe" k%

"abe"

* Both left and right-flanking:

abcxxxdef
llabcl' "def"

* Neither left nor right-flanking:

abc x++ def
a b

(The idea of distinguishing left-flanking and right-flanking delimiter runs based on the character before and the char-
acter after comes from Roopesh Chander's vfmd. vfmd uses the terminology "emphasis indicator string" instead of
"delimiter run," and its rules for distinguishing left- and right-flanking runs are a bit more complex than the ones given
here.)

The following rules define emphasis and strong emphasis:
1. A single * character can open emphasis iff (if and only if) it is part of a [left-flanking delimiter run].

2. A single _ character [can open emphasis] iff it is part of a [left-flanking delimiter run] and either (a) not part of

a [right-flanking delimiter run] or (b) part of a [right-flanking delimiter run] preceded by punctuation.
3. Asingle » character can close emphasis iff it is part of a [right-flanking delimiter run].

4. A single _ character [can close emphasis] iff it is part of a [right-flanking delimiter run] and either (a) not part

of a [left-flanking delimiter run] or (b) part of a [left-flanking delimiter run] followed by punctuation.

6.4. Emphasis and strong emphasis 109

http://www.vfmd.org/vfmd-spec/specification/#procedure-for-identifying-emphasis-tags

CommonMark

5.

6.

10.

11.

12.

A double x can open strong emphasis iff it is part of a [left-flanking delimiter run].

A double ___ [can open strong emphasis] iff it is part of a [left-flanking delimiter run] and either (a) not part of

a [right-flanking delimiter run] or (b) part of a [right-flanking delimiter run] preceded by punctuation.
A double * x can close strong emphasis iff it is part of a [right-flanking delimiter run].

A double ___[can close strong emphasis] iff it is part of a [right-flanking delimiter run] and either (a) not part

of a [left-flanking delimiter run] or (b) part of a [left-flanking delimiter run] followed by punctuation.

Emphasis begins with a delimiter that [can open emphasis] and ends with a delimiter that [can close emphasis],
and that uses the same character (_ or %) as the opening delimiter. The opening and closing delimiters must
belong to separate [delimiter runs]. If one of the delimiters can both open and close emphasis, then the sum
of the lengths of the delimiter runs containing the opening and closing delimiters must not be a multiple of 3

unless both lengths are multiples of 3.

Strong emphasis begins with a delimiter that [can open strong emphasis] and ends with a delimiter that [can
close strong emphasis], and that uses the same character (_ or) as the opening delimiter. The opening and
closing delimiters must belong to separate [delimiter runs]. If one of the delimiters can both open and close
strong emphasis, then the sum of the lengths of the delimiter runs containing the opening and closing delimiters

must not be a multiple of 3 unless both lengths are multiples of 3.

A literal + character cannot occur at the beginning or end of *-delimited emphasis or *-delimited strong

emphasis, unless it is backslash-escaped.

A literal _ character cannot occur at the beginning or end of _-delimited emphasis or __-delimited strong

emphasis, unless it is backslash-escaped.

Where rules 1--12 above are compatible with multiple parsings, the following principles resolve ambiguity:

13.

14.

15.

16.

17.

The number of nestings should be minimized. Thus, for example, an interpretation ...</
strong> is always preferred to

An interpretation ... is always preferred to ...</
em>.

When two potential emphasis or strong emphasis spans overlap, so that the second begins before the first ends
and ends after the first ends, the first takes precedence. Thus, for example, xfoo _bar* baz_ is parsed as

foo _bar baz_ rather than xfoo bar* baz.

When there are two potential emphasis or strong emphasis spans with the same closing delimiter, the shorter one
(the one that opens later) takes precedence. Thus, for example, *xfoo *xbar bazx« is parsed as **foo

bar baz rather than foo **bar baz.

Inline code spans, links, images, and HTML tags group more tightly than emphasis. So, when there is a
choice between an interpretation that contains one of these elements and one that does not, the former al-

ways wins. Thus, for example, = [foox] (bar) is parsed as xfoox rather than as

110

O 6 0 Inlines

CommonMark

[foo] (bar).
These rules can be illustrated through a series of examples.

Rule 1:

*foo barx

<p>foo bar</p>

This is not emphasis, because the opening « is followed by whitespace, and hence not part of a [left-flanking delimiter

run]:

a * foo barx

<p>a * foo barx</p>

This is not emphasis, because the opening * is preceded by an alphanumeric and followed by punctuation, and hence

not part of a [left-flanking delimiter run]:

ax"foo"

<p>ax" foo" x</p>

Unicode nonbreaking spaces count as whitespace, too:

*"rcz2”ralarrc27ralx

<p>*/\Ac2/\/\aOaA/\CzA/\aO*</p>

Intraword emphasis with « is permitted:

fooxbarx*

<p>foobar</p>

5x6%x78

<p>5678</p>

Rule 2:

foo bar

<p>foo bar</p>

This is not emphasis, because the opening __is followed by whitespace:

6.4. Emphasis and strong emphasis 111

CommonMark

_ foo bar_

<p>_ foo bar_</p>

This is not emphasis, because the opening __is preceded by an alphanumeric and followed by punctuation:

a_"foo"_

<p>a_s" foo"_</p>

Emphasis with __is not allowed inside words:

foo_bar__

<p>foo_bar_</p>

5_6_78

<p>5_6_78</p>

npuncrtTaHamM_CTpemMATCAa_

<p>npUCTaHAM_CTpeMaTcsa_</p>

Here _ does not generate emphasis, because the first delimiter run is right-flanking and the second left-flanking:

aa_"bb"_cc

<p>aa_"bbs"_cc</p>

This is emphasis, even though the opening delimiter is both left- and right-flanking, because it is preceded by punctu-

ation:

foo—_ (bar)__

<p>foo- (bar) </p>

Rule 3:

This is not emphasis, because the closing delimiter does not match the opening delimiter:

_foox

<p>_foox</p>

This is not emphasis, because the closing « is preceded by whitespace:

112 O 6 0 Inlines

CommonMark

+foo bar *

<p>xfoo bar *</p>

A newline also counts as whitespace:

+*foo bar

*

<p>xfoo bar
*</p>

This is not emphasis, because the second * is preceded by punctuation and followed by an alphanumeric (hence it is

not part of a [right-flanking delimiter run]:

* (xfoo)

<p>* (xfoo) </p>

The point of this restriction is more easily appreciated with this example:

* (xfoox*) *

<p> (foo) </p>

Intraword emphasis with = is allowed:

+fooxbar

<p>foobar</p>

Rule 4:

This is not emphasis, because the closing _ is preceded by whitespace:

_foo bar _

<p>_foo bar _</p>

This is not emphasis, because the second __ is preceded by punctuation and followed by an alphanumeric:

_(_foo)

<p>_ (_foo)</p>

This is emphasis within emphasis:

6.4. Emphasis and strong emphasis 113

CommonMark

_(_foo_)_

<p> (foo) </p>

Intraword emphasis is disallowed for _:

_foo_bar

<p>_foo_bar</p>

_npuctaHamM_cTpemMsaTcaA

<p>_npuctaHaAM_cTpemMaTcsa</p>

_foo_bar_baz_

<p>foo_bar_baz</p>

This is emphasis, even though the closing delimiter is both left- and right-flanking, because it is followed by punctua-

tion:

(bar).

<p> (bar) .</p>

Rule 5:

+**foo barxx

<p>foo bar</p>

This is not strong emphasis, because the opening delimiter is followed by whitespace:

x foo barxx

<p>*x foo barxx</p>

This is not strong emphasis, because the opening = » is preceded by an alphanumeric and followed by punctuation, and

hence not part of a [left-flanking delimiter run]:

ax*"foo"x*

<p>axx" foo" «*x</p>

Intraword strong emphasis with » « is permitted:

114 0 6 O Inlines

CommonMark

fooxxbarxx

<p>foobar</p>

Rule 6:

_ foo bar___

<p>foo bar</p>

This is not strong emphasis, because the opening delimiter is followed by whitespace:

_ foo bar___

<p>__ foo bar__ </p>

A newline counts as whitespace:

foo bar___

<p>

foo bar_ </p>

This is not strong emphasis, because the opening ___is preceded by an alphanumeric and followed by punctuation:

a_ "foo"

<p>a__" foo"__</p>

Intraword strong emphasis is forbidden with __:

foo_ _bar

<p>foo__bar__</p>

<p>5__6__78</p>

npucrtaHsam_cTpemMaTtcsa__

<p>npucrtaHaM_cTpemaTtrcsa_ </p>

6.4. Emphasis and strong emphasis 115

CommonMark

_ foo, __bar_ , baz___

<p>foo, bar, baz</p>

This is strong emphasis, even though the opening delimiter is both left- and right-flanking, because it is preceded by

punctuation:

foo—-__ (bar)_

<p>foo- (bar) </p>

Rule 7:

This is not strong emphasis, because the closing delimiter is preceded by whitespace:

**foo bar xx

<p>**xfoo bar »*</p>

(Nor can it be interpreted as an emphasized «foo bar =, because of Rule 11.)

This is not strong emphasis, because the second * x is preceded by punctuation and followed by an alphanumeric:

** (x*f00)

<p>*x* (xxfoo0) </p>

The point of this restriction is more easily appreciated with these examples:

* (x*foo*x) *

<p> (foo)</p>

x**Gomphocarpus (*Gomphocarpus physocarpusx*, syn.

x*Asclepias physocarpax) x*

<p>Gomphocarpus (Gomphocarpus physocarpus, syn.

Asclepias physocarpa)</p>

*xfoo "xbarx" fooxx

<p>foo "bar" foo</p>

Intraword emphasis:

116 O 6 0 Inlines

CommonMark

*xfooxxbar

<p>foobar</p>

Rule &:

This is not strong emphasis, because the closing delimiter is preceded by whitespace:

_ foo bar __

<p>__foo bar __</p>

This is not strong emphasis, because the second ___is preceded by punctuation and followed by an alphanumeric:

_ (__foo)

<p>__(__foo)</p>

The point of this restriction is more easily appreciated with this example:

foo_)_

—(—

<p> (foo) </p>

Intraword strong emphasis is forbidden with __:

_ _foo__bar

<p>__foo__bar</p>

_npucTaHaM_cTpemMaTcs

<p>_npucTtaHsmM_cTpemMaTcs</p>

_ foo__bar_ baz_

<p>foo__bar__ _baz</p>

This is strong emphasis, even though the closing delimiter is both left- and right-flanking, because it is followed by

punctuation:

_ (bar)__.

<p> (bar).</p>

Rule 9:

6.4. Emphasis and strong emphasis

117

CommonMark

Any nonempty sequence of inline elements can be the contents of an emphasized span.

xfoo [bar] (/url) x

<p>foo bar</p>

*foo

barx

<p>foo

bar</p>

In particular, emphasis and strong emphasis can be nested inside emphasis:

_foo bar baz__

<p>foo bar baz</p>

_foo _bar_ baz_

<p>foo bar baz</p>

foo_ bar_

<p>foo bar</p>

x*foo xbarxx

<p>foo bar</p>

x*foo xxbarxx bazx

<p>foo bar baz</p>

fooxxbarxxbazx

<p>foobarbaz</p>

Note that in the preceding case, the interpretation

<p>foobarbaz</p>

is precluded by the condition that a delimiter that can both open and close (like the = after foo) cannot form emphasis
if the sum of the lengths of the delimiter runs containing the opening and closing delimiters is a multiple of 3 unless

both lengths are multiples of 3.

118 O 6 0 Inlines

CommonMark

For the same reason, we don't get two consecutive emphasis sections in this example:

xfooxxbarx

<p>fooxxbar</p>

The same condition ensures that the following cases are all strong emphasis nested inside emphasis, even when the

interior spaces are omitted:

**xxfoo*x bar=

<p>foo bar</p>

*foo *xbar**x

<p>foo bar</p>

*fooxxbarx*x*

<p>foobar</p>

When the lengths of the interior closing and opening delimiter runs are both multiples of 3, though, they can match to

create emphasis:

fooxxxbarx*xbaz

<p>foobarbaz</p>

foox*****xbarxxxxx****xbaz

<p>foobarx*x*xbaz</p>

Indefinite levels of nesting are possible:

foo xxbar xbazx bimxx bop=

<p>foo bar baz bim bop</p>

«*foo [*bar=*] (/url) =

<p>foo bar</p>

There can be no empty emphasis or strong emphasis:

6.4. Emphasis and strong emphasis 119

CommonMark

*% 1s not an empty emphasis

<p>** 1s not an empty emphasis</p>

*%%x% 1s not an empty strong emphasis

<p>***x 1is not an empty strong emphasis</p>

Rule 10:

Any nonempty sequence of inline elements can be the contents of an strongly emphasized span.

x*xfoo [bar] (/url) x=*

<p>foo bar</p>

**foo

bar*x*

<p>foo
bar</p>

In particular, emphasis and strong emphasis can be nested inside strong emphasis:

_ foo _bar_ baz_

<p>foo bar baz</p>

foo bar baz

<p>foo bar baz</p>

foo bar

<p>foo bar</p>

fo0o *xxbarxx*

<p>foo bar</p>

**foo xbarx bazx*x

<p>foo bar baz</p>

120

O 6 0 Inlines

CommonMark

*xfooxbarxbazx*x*

<p>foobarbaz</p>

*xxfoox barxx

<p>foo bar</p>

*xfoo xbarxxx

<p>foo bar</p>

Indefinite levels of nesting are possible:

x*xfoo xbar xxbazxx*

bimx bopx*=*

<p>foo bar baz

bim bop</p>

xxfoo [xbarx] (/url) x*

<p>foo bar</p>

There can be no empty emphasis or strong emphasis:

___ 1s not an empty emphasis

<p>__ is not an empty emphasis</p>

is not an empty strong emphasis

<p> is not an empty strong emphasis</p>

Rule 11:

foo *x%

<p>foo **xx</p>

foo **x

<p>foo *</p>

6.4. Emphasis and strong emphasis

121

CommonMark

foo *_=x

<p>foo _</p>

fOoo **x%x%

<p>foo **xxx</p>

foo *x\x*x*

<p>foo *</p>

foo **_**

<p>foo _</p>

Note that when delimiters do not match evenly, Rule 11 determines that the excess literal characters will appear

outside of the emphasis, rather than inside it:

**foox

<p>xfoo</p>

fooxx

<p>foo*</p>

***foo*x*

<p>xfoo</p>

*x*x*xfoo*

<p>*x**foo</p>

xfOO*

<p>foo*</p>

fTOO %% %

<p>foo**x</p>

Rule 12:

122 O 6 0 Inlines

CommonMark

foo
<p>foo </p>
foo _\

<p>foo _</p>

foo _~*

<p>foo *</p>

foo

<p>foo </p>

foo \

<p>foo _</p>

foo *

<p>foo *x</p>

_ foo_

<p>_foo</p>

Note that when delimiters do not match evenly, Rule 12 determines that the excess literal _ characters will appear

outside of the emphasis, rather than inside it:

foo

<p>foo_</p>

foo

<p>_foo</p>

foo

<p> foo</p>

6.4. Emphasis and strong emphasis 123

CommonMark

_ foo

<p>foo_</p>

foo

<p>foo___ </p>

Rule 13 implies that if you want emphasis nested directly inside emphasis, you must use different delimiters:

fO0O

<p>foo</p>

«_foo_x

<p>foo</p>

foo

<p>foo</p>

xfoox

<p>foo</p>

However, strong emphasis within strong emphasis is possible without switching delimiters:

*x*k*FOO0O****

<p>foo</p>

foo

<p>foo</p>

Rule 13 can be applied to arbitrarily long sequences of delimiters:

*kkkk*FOO******

<p>foo</p>

Rule 14:

124 0 6 O Inlines

CommonMark

*x*xfOO**x*

<p>foo</p>

foo

<p>foo</p>

Rule 15:

+*foo _barx baz

<p>foo _bar baz_</p>

*foo __ _bar *baz bim__ bamx

<p>foo bar *baz bim bam</p>

Rule 16:

+**foo xxbar baz*x*

<p>*x*foo bar baz</p>

*foo xbar bazx

<p>*foo bar baz</p>

Rule 17:

* [bar*] (/url)

<p>*barx</p>

foo [bar] (/url)

<p>_foo bar_</p>

x

<p>*x</p>

**

<p>**</p>

6.4. Emphasis and strong emphasis 125

CommonMark

_

<p>__</p>

*a | x x

<p>a <code>x</code></p>

<p>a <code>_</code></p>

x*xa<http://foo.bar/?2g=xx>

<p>**ahttp://foo.bar/?2g=+*x</p>

__a<http://foo.bar/?q=__>

<p>__ahttp://foo.bar/?qg=__</p>

6.5 Links

A link contains [link text] (the visible text), a [link destination] (the URI that is the link destination), and optionally
a [link title]. There are two basic kinds of links in Markdown. In [inline links] the destination and title are given

immediately after the link text. In [reference links] the destination and title are defined elsewhere in the document.

A link text consists of a sequence of zero or more inline elements enclosed by square brackets ([and]). The following

rules apply:

» Links may not contain other links, at any level of nesting. If multiple otherwise valid link definitions appear

nested inside each other, the inner-most definition is used.

* Brackets are allowed in the [link text] only if (a) they are backslash-escaped or (b) they appear as a matched

pair of brackets, with an open bracket [, a sequence of zero or more inlines, and a close bracket] .

» Backtick [code spans], [autolinks], and raw [HTML tags] bind more tightly than the brackets in link text. Thus,

for example, [foo™] could not be a link text, since the second] is part of a code span.

* The brackets in link text bind more tightly than markers for [emphasis and strong emphasis]. Thus, for example,

* [foox] (url) is alink.

A link destination consists of either

126 O 6 0 Inlines

CommonMark

* a sequence of zero or more characters between an opening < and a closing > that contains no line breaks or

unescaped < or > characters, or

* a nonempty sequence of characters that does not start with <, does not include ASCII space or control char-
acters, and includes parentheses only if (a) they are backslash-escaped or (b) they are part of a balanced pair
of unescaped parentheses. (Implementations may impose limits on parentheses nesting to avoid performance

issues, but at least three levels of nesting should be supported.)
A link title consists of either

* a sequence of zero or more characters between straight double-quote characters ("), including a " character

only if it is backslash-escaped, or

* asequence of zero or more characters between straight single-quote characters ('), including a ' character only

if it is backslash-escaped, or

* a sequence of zero or more characters between matching parentheses ((.. .)), including a (or) character

only if it is backslash-escaped.
Although [link titles] may span multiple lines, they may not contain a [blank line].

An inline link consists of a [link text] followed immediately by a left parenthesis (, optional [whitespace], an optional
[link destination], an optional [link title] separated from the link destination by [whitespace], optional [whitespace],
and a right parenthesis). The link's text consists of the inlines contained in the [link text] (excluding the enclosing
square brackets). The link's URI consists of the link destination, excluding enclosing <. . . > if present, with backslash-
escapes in effect as described above. The link's title consists of the link title, excluding its enclosing delimiters, with

backslash-escapes in effect as described above.

Here is a simple inline link:

[1link] (/uri "title")

<p>link</p>

The title may be omitted:

[1ink] (/uri)

<p>link</p>

Both the title and the destination may be omitted:

[link] ()

<p>link</p>

6.5. Links 127

CommonMark

[1link] (<>)

<p>link</p>

The destination can only contain spaces if it is enclosed in pointy brackets:

[link] (/my uri)

<p>[link] (/my uri)</p>

[link] (</my uri>)

<p>1link</p>

The destination cannot contain line breaks, even if enclosed in pointy brackets:

[1link] (foo
bar)

<p>[link] (foo
bar) </p>

[1link] (<foo
bar>)

<p>[link] (<foo
bar>) </p>

The destination can contain) if it is enclosed in pointy brackets:

[a] (<b)c>)

<p>a</p>

Pointy brackets that enclose links must be unescaped:

[link] (<foo\>)

<p>[link] (&1t; foos>)</p>

These are not links, because the opening pointy bracket is not matched properly:

[a] (<b)c
[a] (<b)c>

[a] (c)

(ooooooo)

128 O 6 0 Inlines

CommonMark

(0o00ooo0ooon)

<p>[al] (&1t;Db)c
[a] (&1t;Db)cé>
[a] (c) </p>

Parentheses inside the link destination may be escaped:

[link] (\ (foo\))

<p>link</p>

Any number of parentheses are allowed without escaping, as long as they are balanced:

[1link] (foo (and (bar)))

<p>link</p>

However, if you have unbalanced parentheses, you need to escape or use the <. . . > form:

[1link] (foo\ (and\ (bar\))

<p>1link</p>

[1link] (<foo (and (bar) >)

<p>link</p>

Parentheses and other symbols can also be escaped, as usual in Markdown:

[link] (foo\)\:)

<p>1link</p>

A link can contain fragment identifiers and queries:

[link] (#fragment)

[link] (http://example.com#fragment)
[link] (http://example.com?foo=3#fraqg)
<p>1link</p>

<p>1link</p>
<p>1link</p>

Note that a backslash before a non-escapable character is just a backslash:

6.5. Links 129

CommonMark

[1ink] (foo\bar)

<p>1link</p>

URL-escaping should be left alone inside the destination, as all URL-escaped characters are also valid URL characters.
Entity and numerical character references in the destination will be parsed into the corresponding Unicode code points,
as usual. These may be optionally URL-escaped when written as HTML, but this spec does not enforce any particular
policy for rendering URLs in HTML or other formats. Renderers may make different decisions about how to escape

or normalize URLs in the output.

[1link] (foo%20bä)

<p>1ink</p>

Note that, because titles can often be parsed as destinations, if you try to omit the destination and keep the title, you'll

get unexpected results:

[link] ("title")

<p>1link</p>

Titles may be in single quotes, double quotes, or parentheses:

[link] (/url "title")
[link] (/url 'title')
[1link] (/url (title))

<p>1link
link

link</p>

Backslash escapes and entity and numeric character references may be used in titles:

[1ink] (/url "title \""")

<p>link</p>

Titles must be separated from the link using a [whitespace]. Other [Unicode whitespace] like non-breaking space

doesn't work.

[link] (/url®*c2””a0"title")

<p>1ink</p>

Nested balanced quotes are not allowed without escaping:

130 O 6 0 Inlines

CommonMark

[link] (/url "title "and" title")

<p>[link] (/url "title "and" titles")</p>

But it is easy to work around this by using a different quote type:

[1ink] (/url 'title "and" title")

<p>link</p>

(Note: Markdown .pl did allow double quotes inside a double-quoted title, and its test suite included a test demon-
strating this. But it is hard to see a good rationale for the extra complexity this brings, since there are already many
ways---backslash escaping, entity and numeric character references, or using a different quote type for the enclosing
title---to write titles containing double quotes. Markdown .pl's handling of titles has a number of other strange fea-
tures. For example, it allows single-quoted titles in inline links, but not reference links. And, in reference links but not
inline links, it allows a title to begin with " and end with) . Markdown.pl 1.0.1 even allows titles with no closing
quotation mark, though 1.0.2b8 does not. It seems preferable to adopt a simple, rational rule that works the same way

in inline links and link reference definitions.)

[Whitespace] is allowed around the destination and title:

[1ink] (/uri
"title")

<p>link</p>

But it is not allowed between the link text and the following parenthesis:

[1ink] (/uri)

<p>[link] (/uri)</p>

The link text may contain balanced brackets, but not unbalanced ones, unless they are escaped:

[link [foo [barl]l] (/uri)

<p>link [foo [bar]]l</p>

[1ink] bar] (/uri)

<p>[link] bar] (/uri)</p>

[link [bar] (/uri)

<p>[link bar</p>

6.5. Links 131

CommonMark

[link \[bar] (/uri)

<p>link [bar</p>

The link text may contain inline content:

[link *foo *xbarxx “# %] (/uri)

<p>link foo bar <code>#</code></p>

[! [moon] (moon. jpg)] (/uri)

<p></p>

However, links may not contain other links, at any level of nesting.

[foo [bar] (/uri)] (/uri)

<p>[foo bar] (/uri)</p>

[foo *[bar [baz] (/uri)] (/uri) =] (/uri)

<p>[foo [bar baz] (/uri)] (/uri)</p>

'[[[foo] (uril)] (uri2)] (uri3)

<p></p>

These cases illustrate the precedence of link text grouping over emphasis grouping:

* [foo*] (/uri)

<p>*foox</p>

[foo xbar] (bazx*)

<p>foo xbar</p>

Note that brackets that aren't part of links do not take precedence:

*foo [barx baz]

<p>foo [bar baz]</p>

These cases illustrate the precedence of HTML tags, code spans, and autolinks over link grouping:

132 O 6 0 Inlines

CommonMark

[foo <bar attr="] (baz)">
<p>[foo <bar attr="] (baz)"></p>
[foo] (/uri)"®

<p>[foo<code>] (/uri)</code></p>

[foo<http://example.com/?search=] (uri) >

<p>[foohttp://example.com/?search=] (uri)
—</p>

There are three kinds of reference links: full, collapsed, and shortcut.

A full reference link consists of a [link text] immediately followed by a [link label] that [matches] a [link reference

definition] elsewhere in the document.

A link label begins with a left bracket ([) and ends with the first right bracket (]) that is not backslash-escaped.
Between these brackets there must be at least one [non-whitespace character]. Unescaped square bracket characters
are not allowed inside the opening and closing square brackets of [link labels]. A link label can have at most 999

characters inside the square brackets.

One label matches another just in case their normalized forms are equal. To normalize a label, strip off the opening
and closing brackets, perform the Unicode case fold, strip leading and trailing [whitespace] and collapse consecutive
internal [whitespace] to a single space. If there are multiple matching reference link definitions, the one that comes

first in the document is used. (It is desirable in such cases to emit a warning.)

The contents of the first link label are parsed as inlines, which are used as the link's text. The link's URI and title are

provided by the matching [link reference definition].

Here is a simple example:

[foo] [bar]

[bar]: /url "title"

<p>foo</p>

The rules for the [link text] are the same as with [inline links]. Thus:

The link text may contain balanced brackets, but not unbalanced ones, unless they are escaped:

[link [foo [bar]]][ref]

[ref]: /uri

(ooooooo)

6.5. Links 133

CommonMark

(0o00ooo0ooon)

<p>link [foo [bar]]</p>

[link \[bar] [ref]

[ref]: /uri

<p>link [bar</p>

The link text may contain inline content:

[link xfoo *+bar*x “# *][ref]

[ref]: /uri

<p>link foo bar <code>#</code></p>

[! [moon] (moon. jpg)] [ref]

[ref]: /uri

<p></p>

However, links may not contain other links, at any level of nesting.

[foo [bar] (/uri)][ref]

[ref]: /uri

<p>[foo bar]ref</p>

[foo xbar [baz] [ref]l*] [ref]

[ref]: /uri

<p>[foo bar baz]ref</p>

(In the examples above, we have two [shortcut reference links] instead of one [full reference link].)

The following cases illustrate the precedence of link text grouping over emphasis grouping:

* [foox] [ref]

[ref]: /uri

<p>*foox</p>

134 0 60 Inlines

CommonMark

[foo xbar] [ref]

[ref]: /uri

<p>foo xbar</p>

These cases illustrate the precedence of HTML tags, code spans, and autolinks over link grouping:

[foo <bar attr="][ref]">

[ref]: /uri

<p>[foo <bar attr="][ref]"></p>
[foo] [ref]"”

[ref]: /uri

<p>[foo<code>] [ref]</code></p>

[foo<http://example.com/?search=] [ref]>

[ref]: /uri

<p>[foohttp://example.com/?

—search=] [ref]</p>

Matching is case-insensitive:

[foo] [BaR]

[bar]: /url "title"

<p>foo</p>

Unicode case fold is used:

[Tonnoiw][TonnoWn] is a Russian word.

[TONMNOW]: /url

<p>Tonnoi is a Russian word.</p>

Consecutive internal [whitespace] is treated as one space for purposes of determining matching:

6.5. Links 135

CommonMark

[Foo
bar]: /url

[Baz] [Foo bar]

<p>Baz</p>

No [whitespace] is allowed between the [link text] and the [link label]:

[foo] [bar]
[bar]: /url "title"

<p>[foo] bar</p>

[foo]
[bar]

[bar]: /url "title"

<p>[foo]
bar</p>

This is a departure from John Gruber's original Markdown syntax description, which explicitly allows whitespace
between the link text and the link label. It brings reference links in line with [inline links], which (according to both
original Markdown and this spec) cannot have whitespace after the link text. More importantly, it prevents inadvertent
capture of consecutive [shortcut reference links]. If whitespace is allowed between the link text and the link label, then

in the following we will have a single reference link, not two shortcut reference links, as intended:

[foo]: /urll
[bar]: /url2

(Note that [shortcut reference links] were introduced by Gruber himself in a beta version of Markdown . p1l, but never
included in the official syntax description. Without shortcut reference links, it is harmless to allow space between the

link text and link label; but once shortcut references are introduced, it is too dangerous to allow this, as it frequently

leads to unintended results.)

When there are multiple matching [link reference definitions], the first is used:

[fool: /urll

[fool: /url2

(ooooooo)

136 O 6 0 Inlines

CommonMark

(0o00ooo0ooon)

[bar] [foo]

<p>bar</p>

Note that matching is performed on normalized strings, not parsed inline content. So the following does not match,

even though the labels define equivalent inline content:

[bar] [foo\!]
[foo!]: /url

<p>[bar] [foo!]</p>

[Link labels] cannot contain brackets, unless they are backslash-escaped:

[foo] [ref[]
[ref[]: /uri

<p>[foo] [ref[]</p>
<p>[ref[]: /uri</p>

[foo] [ref [bar]]
[ref[bar]]: /uri

<p>[foo] [ref[bar]]</p>
<p>[ref[bar]]: /uri</p>

[[[fooll]
[[[foo]]]: /url

<p>[[[foo]]l]</p>
<p>[[[foolll: /url</p>

[foo] [ref\[]

[ref\[]: /uri

<p>foo</p>

Note that in this example] is not backslash-escaped:

6.5. Links

137

CommonMark

[bar\\]: /uri

[bar\\]

<p>bar\</p>

A [link label] must contain at least one [non-whitespace character]:

[]
[1: /uri

<p>[]1</p>
<p>[]: /uri</p>

[

]: /uri

<p>[

1</p>

<p> I

]: /uri</p>

A collapsed reference link consists of a [link label] that [matches] a [link reference definition] elsewhere in the docu-
ment, followed by the string []. The contents of the first link label are parsed as inlines, which are used as the link's
text. The link's URI and title are provided by the matching reference link definition. Thus, [foo] [] is equivalent to
[foo] [foo].

[foo]l []

[foo]l: /url "title"

<p>foo</p>

[*foox bar][]

[*foox bar]l: /url "title"

<p>foo bar</p>

The link labels are case-insensitive:

138 O 6 0 Inlines

CommonMark

[Foo] []
[foo]: /url "title"

<p>Foo</p>

As with full reference links, [whitespace] is not allowed between the two sets of brackets:

[foo]
[]

[foo]: /url "title"

<p>foo
[1</p>

A shortcut reference link consists of a [link label] that [matches] a [link reference definition] elsewhere in the document
and is not followed by [] or a link label. The contents of the first link label are parsed as inlines, which are used as the
link's text. The link's URI and title are provided by the matching link reference definition. Thus, [foo] is equivalent

to [foo]l [].

[foo]

[fool: /url "title"

<p>foo</p>

[*foox bar]
[*«foox bar]: /url "title"

<p>foo bar</p>

[[*foo* bar]]
[*foox bar]: /url "title"

<p>[foo bar]</p>

[[bar [foo]

[foo]: /url

<p>[[bar foo</p>

The link labels are case-insensitive:

6.5. Links 139

CommonMark

[Foo]

[foo]: /url "title"

<p>Foo</p>

A space after the link text should be preserved:

[foo] bar

[foo]: /url

<p>foo bar</p>

If you just want bracketed text, you can backslash-escape the opening bracket to avoid links:

\ [foo]
[foo]: /url "title"

<p>[foo]</p>

Note that this is a link, because a link label ends with the first following closing bracket:

[foox]: /url

[foox]

<p>*foox</p>

Full and compact references take precedence over shortcut references:

[foo] [bar]

[foo]: /urll
[bar]: /url2

<p>foo</p>

[foo]l []

[foo]: /urll

<p>foo</p>

Inline links also take precedence:

140

O 6 0 Inlines

CommonMark

[foo] ()

[foo]: /urll

<p>foo</p>

[foo] (not a link)

[foo]l: /urll

<p>foo(not a link)</p>

In the following case [bar] [baz] is parsed as a reference, [foo] as normal text:

[foo] [bar] [baz]

[baz]: /url

<p>[foolbar</p>

Here, though, [foo] [bar] is parsed as a reference, since [bar] is defined:

[foo] [bar] [baz]

[baz]: /urll
[bar]: /url2

<p>foobaz</p>

Here [foo] is not parsed as a shortcut reference, because it is followed by a link label (even though [bar] is not
defined):

[foo] [bar] [baz]

[baz]: /urll
[fool: /url2

<p>[foo]lbar</p>

6.5. Links 141

CommonMark

6.6 Images

Syntax for images is like the syntax for links, with one difference. Instead of [link text], we have an image description.
The rules for this are the same as for [link text], except that (a) an image description starts with ! [rather than [, and
(b) an image description may contain links. An image description has inline elements as its contents. When an image

is rendered to HTML, this is standardly used as the image's alt attribute.

!'[foo] (/url "title")

<p></p>

!'[foo xbarx*]

[foo *barx]: train.jpg "train & tracks"

<p></p>

'[foo ![bar] (/url)] (/url2)

<p></p>

!'[foo [bar] (/url)] (/url2)

<p></p>

Though this spec is concerned with parsing, not rendering, it is recommended that in rendering to HTML, only the
plain string content of the [image description] be used. Note that in the above example, the alt attribute's value is foo
bar, not foo [bar] (/url) or foo bar. Only the plain string content is rendered,

without formatting.

! [foo *bar*][]

[foo *barx]: train.jpg "train & tracks"

<p></p>

'Tfoo *barx] [foobar]

[FOOBAR] : train.jpg "train & tracks"

<p></p>

! [foo] (train. jpg)

<p></p>

142 0 6 O Inlines

CommonMark

My ! [foo bar] (/path/to/train.jpg "title")

<p>My </p>

' [foo] (<url>)

<p></p>

'] (/url)

<p></p>

Reference-style:

!'[foo] [bar]

[bar]: /url

<p></p>

!'[foo] [bar]

[BAR]: /url

<p></p>

Collapsed:

! [foo] []

[foo]l: /url "title"

<p></p>

! [*foo* bar][]

[*foox bar]: /url "title"

<p></p>

The labels are case-insensitive:

! [Foo] []

[foo]: /url "title"

(ooooooo)

6.6. Images 143

CommonMark

(0o00ooo0ooon)

<p></p>

As with reference links, [whitespace] is not allowed between the two sets of brackets:

'[foo]
[]

[foo]: /url "title"

<p>
[1</p>

Shortcut:

' [foo]

[foo]: /url "title"

<p></p>

' [*foo* bar]

[*foox bar]l: /url "title"

<p></p>

Note that link labels cannot contain unescaped brackets:

!'[[foo]]
[[foo]]l: /url "title"
<p>![[fool]l</p>

<p>[[foo]l]l: /url "title"</p>

The link labels are case-insensitive:

' [Foo]

[fool: /url "title"

<p></p>

If you just want a literal ! followed by bracketed text, you can backslash-escape the opening [:

144

O 6 0 Inlines

CommonMark

'\ [foo]
[foo]: /url "title"

<p>![fool</p>

If you want a link after a literal !, backslash-escape the !:

\![foo]

[fool: /url "title"

<p>!foo</p>

6.7 Autolinks

Autolinks are absolute URIs and email addresses inside < and >. They are parsed as links, with the URL or email
address as the link label.

A URI autolink consists of <, followed by an [absolute URI] followed by >. It is parsed as a link to the URI, with the
URI as the link's label.

An absolute URI, for these purposes, consists of a [scheme] followed by a colon (:) followed by zero or more charac-
ters other than ASCII [whitespace] and control characters, <, and >. If the URI includes these characters, they must be

percent-encoded (e.g. $20 for a space).

For purposes of this spec, a scheme is any sequence of 2--32 characters beginning with an ASCII letter and followed

non

by any combination of ASCII letters, digits, or the symbols plus ("+"), period ("."), or hyphen ("-").

Here are some valid autolinks:

<http://foo.bar.baz>

<p>http://foo.bar.baz</p>

<http://foo.bar.baz/test?g=hello&id=22&boolean>

<p>http://foo.bar.baz/
—test?g=hello& id=22& boolean</p>

<irc://foo.bar:2233/baz>

<p>irc://foo.bar:2233/baz</p>

Uppercase is also fine:

6.7. Autolinks 145

CommonMark

<MAILTO:FOO@BAR.BAZ>

<p>MAILTO:FOO@BAR.BAZ</p>

Note that many strings that count as [absolute URIs] for purposes of this spec are not valid URIs, because their schemes

are not registered or because of other problems with their syntax:

<atb+c:d>

<p>a+b+c:d</p>

<made-up-scheme://foo,bar>

<p>made—up-scheme://foo,bar</p>

<http://../>

<p>http://../</p>

<localhost:5001/foo>

<p>1localhost:5001/foo</p>

Spaces are not allowed in autolinks:

<http://foo.bar/baz bim>

<p><http://foo.bar/baz bim></p>

Backslash-escapes do not work inside autolinks:

<http://example.com/\ [\>

<p>http://example.com/\ [\</p>

An email autolink consists of <, followed by an [email address], followed by >. The link's label is the email address,

and the URL ismailto: followed by the email address.

An email address, for these purposes, is anything that matches the non-normative regex from the HTMLS5 spec:

/" [a—zA-Z0-9. 1 #S$%&"'x+/=2"_"{|}~-]1+Q@[a-2zA-Z20-9] (?: [a-2zA-Z0-9-]{0,61}[a-zA-Z0-9])?
(?2:\.[a-zA-20-9] (?:[a—-2zA-Z0-9-]1{0,61} [a—-zA-Z20-9])?)*S$/

Examples of email autolinks:

146 0 6 O Inlines

https://html.spec.whatwg.org/multipage/forms.html#e-mail-state-(type=email)

CommonMark

<fool@bar.example.com>

<p>foolbar.example.com</p>

<footspecial@Bar.baz-bar0.com>

<p>foo+special@Bar.baz-bar0.com</p>

Backslash-escapes do not work inside email autolinks:

<foo\+@bar.example.com>

<p>< foot+@bar.example.com> </p>

These are not autolinks:

<>

<p><></p>

< http://foo.bar >

<p>< http://foo.bar ></p>

<m:abc>

<p><m:abc> </p>

<foo.bar.baz>

<p>< foo.bar.baz> </p>

http://example.com

<p>http://example.com</p>

foo@bar.example.com

<p>foo@bar.example.com</p>

6.7. Autolinks 147

CommonMark

6.8 Raw HTML

Text between < and > that looks like an HTML tag is parsed as araw HTML tag and will be rendered in HTML without
escaping. Tag and attribute names are not limited to current HTML tags, so custom tags (and even, say, DocBook tags)

may be used.

Here is the grammar for tags:

A tag name consists of an ASCII letter followed by zero or more ASCII letters, digits, or hyphens (-).
An attribute consists of [whitespace], an [attribute name], and an optional [attribute value specification].

An attribute name consists of an ASCII letter, _, or :, followed by zero or more ASCII letters, digits, _, ., :, or —.
(Note: This is the XML specification restricted to ASCII. HTMLS is laxer.)

An attribute value specification consists of optional [whitespace], a = character, optional [whitespace], and an [attribute

value].

An attribute value consists of an [unquoted attribute value], a [single-quoted attribute value], or a [double-quoted

attribute value].

An unquoted attribute value is a nonempty string of characters not including [whitespace], ", ', =, <, >, or *.
A single-quoted attribute value consists of ', zero or more characters not including ', and a final '.

A double-quoted attribute value consists of ", zero or more characters not including ", and a final ".

An open tag consists of a < character, a [tag name], zero or more [attributes], optional [whitespace], an optional /

character, and a > character.
A closing tag consists of the string </, a [tag name], optional [whitespace], and the character >.

An HTML comment consists of <! —— + text + ——>, where fext does not start with > or —>, does not end with —, and

does not contain ——. (See the HTMLS5 spec.)
A processing instruction consists of the string <?, a string of characters not including the string ?>, and the string ?>.

A declaration consists of the string <!, a name consisting of one or more uppercase ASCII letters, [whitespace], a

string of characters not including the character >, and the character >.

A CDATA section consists of the string <! [CDATA [, a string of characters not including the string]] >, and the string
11>.

An HTML tag consists of an [open tag], a [closing tag], an [HTML comment], a [processing instruction], a [declara-
tion], or a [CDATA section].

Here are some simple open tags:

148 0 6 O Inlines

http://www.w3.org/TR/html5/syntax.html#comments

CommonMark

<a><bab><c2c>

<p><a><bab><c2c></p>

Empty elements:

<a/><b2/>

<p><a/><b2/></p>

[Whitespace] is allowed:

<a /><b2

data="foo" >

<p><a /><b2
data="foo" ></p>

With attributes:

<a foo="bar" bam = 'baz "'

_boolean zoop:33=zoop:33 />

<p><a foo="bar" bam = 'baz "'

_boolean zoop:33=zoop:33 /></p>

Custom tag names can be used:

Foo <responsive-image src="foo.jpg" />

<p>Foo <responsive-image src="foo.jpg" /></p>

Illegal tag names, not parsed as HTML.:

<33> <_ >

<p><33> <_ ></p>

[llegal attribute names:

<a hx#ref="hi">

<p></p>

Illegal attribute values:

6.8. Raw HTML

149

CommonMark

<p> <a href=hi'sgt;</p>

Illegal [whitespace]:

< a><
foo><bar/ >
<foo bar=baz
bim!bop />

<p>< a><
foo><bar/ >
< foo bar=baz
bim!bop /></p>

Missing [whitespace]:

<p></p>

Closing tags:

</foo >

<p></foo ></p>

Illegal attributes in closing tag:

</a href="foo">

<p></a href=" foo" ></p>

Comments:

foo <!-- this is a

comment - with hyphen -->

<p>foo <!-- this is a

comment — with hyphen —--></p>

foo <!-- not a comment -- two hyphens —-->

<p>foo <!-- not a comment -- two hyphens --></p>

Not comments:

150

O 6 0 Inlines

CommonMark

foo <!--> foo -—>
foo <!-—- foo———>

<p>foo <!--> foo --></p>
<p>foo <!-- foo--—-></p>

Processing instructions:

foo <?php echo $a; ?>

<p>foo <?php echo $a; ?2></p>

Declarations:

foo <!ELEMENT br EMPTY>

<p>foo <!ELEMENT br EMPTY></p>

CDATA sections:

foo <! [CDATA[>&<]]1>

<p>foo <! [CDATA[>&<]]></p>

Entity and numeric character references are preserved in HTML attributes:

foo

<p>foo </p>

Backslash escapes do not work in HTML attributes:

foo

<p>foo </p>

<a href:"\" LSS

<p> </p>

6.8. Raw HTML

151

CommonMark

6.9 Hard line breaks

A line break (not in a code span or HTML tag) that is preceded by two or more spaces and does not occur at the end of

a block is parsed as a hard line break (rendered in HTML as a
 tag):

foo

baz

<p>foo

baz</p>

For a more visible alternative, a backslash before the [line ending] may be used instead of two spaces:

foo\

baz

<p>foo

baz</p>

More than two spaces can be used:

foo

baz

<p>foo

baz</p>

Leading spaces at the beginning of the next line are ignored:

foo

bar

<p>foo

bar</p>

foo\
bar

<p>foo

bar</p>

Line breaks can occur inside emphasis, links, and other constructs that allow inline content:

+*foo

barx*

(ooooooo)

152 O 6 0 Inlines

CommonMark

(0o00ooo0ooon)

<p>foo

bar</p>

*foo\

barx

<p>foo

bar</p>

Line breaks do not occur inside code spans

‘code

span’

<p><code>code span</code></p>

‘code\

span’

<p><code>code\ span</code></p>

or HTML tags:

<a href="foo

bar">

<p><a href="foo
bar"></p>

<a href="foo\

bar">

<p><a href="foo\
bar"></p>

Hard line breaks are for separating inline content within a block. Neither syntax for hard line breaks works at the end

of a paragraph or other block element:

foo\

<p>foo\</p>

foo

<p>foo</p>

6.9. Hard line breaks 153

CommonMark

##4# foo\

<h3>foo\</h3>

##4# foo

<h3>foo</h3>

6.10 Soft line breaks

A regular line break (not in a code span or HTML tag) that is not preceded by two or more spaces or a backslash is
parsed as a softbreak. (A softbreak may be rendered in HTML either as a [line ending] or as a space. The result will

be the same in browsers. In the examples here, a [line ending] will be used.)

foo

baz

<p>foo
baz</p>

Spaces at the end of the line and beginning of the next line are removed:

foo

baz

<p>foo
baz</p>

A conforming parser may render a soft line break in HTML either as a line break or as a space.

A renderer may also provide an option to render soft line breaks as hard line breaks.

6.11 Textual content

Any characters not given an interpretation by the above rules will be parsed as plain textual content.

hello $.; 'there

<p>hello $.; 'there</p>

Foo X p “*el”*bf *86V

<p>Foo X p ""el”"bf~""86V </p>

154 0 60 Inlines

CommonMark

Internal spaces are preserved verbatim:

Multiple spaces

<p>Multiple spaces</p>

6.11. Textual content 155

157

0 70

Appendix: A parsing strategy

In this appendix we describe some features of the parsing strategy used in the CommonMark reference implementa-

tions.

7.1 Overview

Parsing has two phases:

1. In the first phase, lines of input are consumed and the block structure of the document---its division into para-
graphs, block quotes, list items, and so on---is constructed. Text is assigned to these blocks but not parsed. Link

reference definitions are parsed and a map of links is constructed.

2. In the second phase, the raw text contents of paragraphs and headings are parsed into sequences of Markdown
inline elements (strings, code spans, links, emphasis, and so on), using the map of link references constructed

in phase 1.

At each point in processing, the document is represented as a tree of blocks. The root of the tree is a document block.
The document may have any number of other blocks as children. These children may, in turn, have other blocks as
children. The last child of a block is normally considered open, meaning that subsequent lines of input can alter its
contents. (Blocks that are not open are closed.) Here, for example, is a possible document tree, with the open blocks

marked by arrows:

—> document
-> block_quote
paragraph
"Lorem ipsum dolor\nsit amet."
-> list (type=bullet tight=true bullet_char=-)
list_item
paragraph
"Qui *quodsi iracundiax"

-> list_item

(ooooooo)

CommonMark

(0o00ooo0ooon)

—> paragraph

"aliquando id"

7.2 Phase 1: block structure

Each line that is processed has an effect on this tree. The line is analyzed and, depending on its contents, the document

may be altered in one or more of the following ways:

1. One or more open blocks may be closed.

2. One or more new blocks may be created as children of the last open block.

3. Text may be added to the last (deepest) open block remaining on the tree.
Once a line has been incorporated into the tree in this way, it can be discarded, so input can be read in a stream.
For each line, we follow this procedure:

1. First we iterate through the open blocks, starting with the root document, and descending through last children
down to the last open block. Each block imposes a condition that the line must satisfy if the block is to remain
open. For example, a block quote requires a > character. A paragraph requires a non-blank line. In this phase
we may match all or just some of the open blocks. But we cannot close unmatched blocks yet, because we may

have a [lazy continuation line].

2. Next, after consuming the continuation markers for existing blocks, we look for new block starts (e.g. > for a
block quote). If we encounter a new block start, we close any blocks unmatched in step 1 before creating the

new block as a child of the last matched block.

3. Finally, we look at the remainder of the line (after block markers like >, list markers, and indentation have been
consumed). This is text that can be incorporated into the last open block (a paragraph, code block, heading, or
raw HTML).

Setext headings are formed when we see a line of a paragraph that is a [setext heading underline].

Reference link definitions are detected when a paragraph is closed; the accumulated text lines are parsed to see if they

begin with one or more reference link definitions. Any remainder becomes a normal paragraph.

We can see how this works by considering how the tree above is generated by four lines of Markdown:

> Lorem ipsum dolor
sit amet.
> — Qui *quodsi iracundiax

> - aliquando id

At the outset, our document model is just

158 0O 7 0 Appendix: A parsing strategy

CommonMark

-> document

The first line of our text,

> Lorem ipsum dolor

causes a block_quote block to be created as a child of our open document block, and a paragraph block as a

child of the block_quote. Then the text is added to the last open block, the paragraph:

-> document
-> block_quote
—> paragraph

"Lorem ipsum dolor"

The next line,

sit amet.

is a "lazy continuation" of the open paragraph, so it gets added to the paragraph's text:

—-> document
-> block_quote
-> paragraph

"Lorem ipsum dolor\nsit amet."

The third line,

> — Qui xquodsi iracundiax

causes the paragraph block to be closed, and a new 1ist block opened as a child of the block_quote. A
list_itemis also added as a child of the 1ist, and a paragraph as a child of the 1ist_item. The text is then
added to the new paragraph:

-> document
-> block_quote
paragraph
"Lorem ipsum dolor\nsit amet."
-> list (type=bullet tight=true bullet_char=-)
-> list_item
—-> paragraph

"Qui *quodsi iracundiax"

The fourth line,

7.2. Phase 1: block structure 159

CommonMark

> — aliquando id

causes the 1ist_item (and its child the paragraph) to be closed, and a new 1ist_item opened up as child of
the 1ist. A paragraph is added as a child of the new 1ist_1item, to contain the text. We thus obtain the final

tree:

—-> document
-> block_quote
paragraph
"Lorem ipsum dolor\nsit amet."
-> list (type=bullet tight=true bullet_char=-)
list_item
paragraph
"Qui *quodsi iracundiax"
-> list_item
—-> paragraph

"aliquando id"

7.3 Phase 2: inline structure

Once all of the input has been parsed, all open blocks are closed.

We then "walk the tree," visiting every node, and parse raw string contents of paragraphs and headings as inlines. At

this point we have seen all the link reference definitions, so we can resolve reference links as we go.

document
block_quote
paragraph
str "Lorem ipsum dolor"
softbreak
str "sit amet."
list (type=bullet tight=true bullet_char=-)
list_item
paragraph
str "Qui "
emph
str "quodsi iracundia"
list_item
paragraph

str "aliquando id"

Notice how the [line ending] in the first paragraph has been parsed as a softbreak, and the asterisks in the first list

item have become an emph.

160 0O 7 0 Appendix: A parsing strategy

CommonMark

7.3.1 An algorithm for parsing nested emphasis and links
By far the trickiest part of inline parsing is handling emphasis, strong emphasis, links, and images. This is done using
the following algorithm.
When we're parsing inlines and we hit either
e arun of = or _ characters, or
cafor!]

we insert a text node with these symbols as its literal content, and we add a pointer to this text node to the delimiter

stack.

The [delimiter stack] is a doubly linked list. Each element contains a pointer to a text node, plus information about
* the type of delimiter ([, ! [, *, _)
e the number of delimiters,

¢ whether the delimiter is "active" (all are active to start), and

whether the delimiter is a potential opener, a potential closer, or both (which depends on what sort of characters

precede and follow the delimiters).
When we hit a] character, we call the look for link or image procedure (see below).

When we hit the end of the input, we call the process emphasis procedure (see below), with stack_bottom=NULL.

look for link or image
Starting at the top of the delimiter stack, we look backwards through the stack for an opening [or ! [delimiter.
¢ If we don't find one, we return a literal text node].

¢ If we do find one, but it's not active, we remove the inactive delimiter from the stack, and return a literal text

node].

* If we find one and it's active, then we parse ahead to see if we have an inline link/image, reference link/image,

compact reference link/image, or shortcut reference link/image.
— If we don't, then we remove the opening delimiter from the delimiter stack and return a literal text node].
— If we do, then

% We return a link or image node whose children are the inlines after the text node pointed to by the

opening delimiter.

x We run process emphasis on these inlines, with the [opener as stack_bottom.

7.3. Phase 2: inline structure 161

CommonMark

* We remove the opening delimiter.

% If we have a link (and not an image), we also set all [delimiters before the opening delimiter to

inactive. (This will prevent us from getting links within links.)

process emphasis

Parameter stack_bottom sets a lower bound to how far we descend in the [delimiter stack]. If it is NULL, we can

go all the way to the bottom. Otherwise, we stop before visiting stack_bottom.

Let current_position point to the element on the [delimiter stack] just above stack_bottom (or the first

element if stack_bottomis NULL).

We keep track of the openers_bottom for each delimiter type (x, _) and each length of the closing delimiter run

(modulo 3). Initialize this to stack_bottom.
Then we repeat the following until we run out of potential closers:

* Move current_position forward in the delimiter stack (if needed) until we find the first potential closer
with delimiter = or _. (This will be the potential closer closest to the beginning of the input -- the first one in

parse order.)

* Now, look back in the stack (staying above stack_bottom and the openers_bottom for this delimiter

type) for the first matching potential opener ("matching” means same delimiter).
* If one is found:

— Figure out whether we have emphasis or strong emphasis: if both closer and opener spans have length >=

2, we have strong, otherwise regular.
— Insert an emph or strong emph node accordingly, after the text node corresponding to the opener.
— Remove any delimiters between the opener and closer from the delimiter stack.

— Remove 1 (for regular emph) or 2 (for strong emph) delimiters from the opening and closing text nodes. If
they become empty as a result, remove them and remove the corresponding element of the delimiter stack.

If the closing node is removed, reset current_position to the next element in the stack.
e If none is found:

— Setopeners_bottomto the element before current_position. (We know that there are no openers

for this kind of closer up to and including this point, so this puts a lower bound on future searches.)

— If the closer at current_position is not a potential opener, remove it from the delimiter stack (since

we know it can't be a closer either).
— Advance current_position to the next element in the stack.

After we're done, we remove all delimiters above st ack_bottom from the delimiter stack.

162 0O 7 0 Appendix: A parsing strategy

	イントロダクション
	What is Markdown?
	なぜ仕様が必要なのか?
	この文書について

	まえがき
	文字と行
	タブ
	安全でない文字

	ブロックとインライン
	優先順位
	コンテナブロックとリーフブロック

	リーフブロック
	主題分割
	ATX見出し
	Setext見出し
	インデントコードブロック
	フェンスドコードブロック
	HTML blocks
	Link reference definitions
	Paragraphs
	Blank lines

	Container blocks
	Block quotes
	List items
	Lists

	Inlines
	Backslash escapes
	Entity and numeric character references
	Code spans
	Emphasis and strong emphasis
	Links
	Images
	Autolinks
	Raw HTML
	Hard line breaks
	Soft line breaks
	Textual content

	Appendix: A parsing strategy
	Overview
	Phase 1: block structure
	Phase 2: inline structure

